1-sinAcosA is equal to
cosA1+sinA
sinA1-cosA
tanA1+tanA
tanA1+cosA
Explanation for the correct option.
We have,
1-sinAcosA
Multiply numerator and denominator by 1+sinA
1-sinAcosA=1-sinA×1+sinAcosA×1+sinA=1-sin2AcosA1+sinA...[∵a+ba-b=a2-b2]=cos2AcosA1+sinA...[∵1-sin2A=cos2A]=cosA1+sinA
Therefore, 1-sinAcosA=cosA1+sinA.
Hence, the correct option is A.