Differentiate sin2y+cosxy=k.?
Differentiating sin2y+cosxy=k.
Given sin2y+cosxy=k.
Differentiate with respect to x,
⇒2sinycosy(dydx)–sinxy(y+xdydx)=0 ∵ddxfu=ddufu×dudx
⇒(dydx)[2sinycosy–xsinxy]=ysinxy
⇒dydx=ysinxysin2y–xsinxy ∵sin2θ=2sinθcosθ
Hence, the differentiation of sin2y+cosxy=k with respect to x is ysinxysin2y–xsinxy.