Evaluate:∫sin4xcos4xdx
To evaluate : ∫sin4xcos4xdx
Let I=∫sin4x.cos4x.dx
We know that
sin2x=(1-cos2x)2 and cos2x=(1+cos2x)2
Now ∫sin4xcos4xdx=∫sin4xcos4xdx
=∫[(1-cos2x2)2(1+cos2x2)2]dx
=∫(1-cos2x4)2(1+cos2x4)2]dx
=116∫(1-cos22x)2dx
=116∫(1+cos42x-2cos22x)dx
Solving for cos2x , we get
cos4x=2cos22x-12cos22x=1+cos4xcos22x=1+cos4x2
∫sin4xcos4xdx =116∫(1+(1+cos24x2)2-2(1+cos4x2)dx
=116∫(1+(1+cos24x2)2-1-cos4xdx
=116∫1+cos24x+2cos4x-2cos4x2dx
=132∫1+cos24xdx
Solving for cos4x , we get
cos8x=2cos24x-12cos24x=1+cos8xcos24x=1+cos8x2
∫sin4xcos4xdx =132∫1+1+cos8x2dx
=132∫2+1+cos8x2dx
=164∫3+cos8xdx
=164[∫3+∫cos8x]dx
=164[3x+sin8x8]+C (Formula used : =cosnx=sinnxn)
Thus,∫sin4xcos4xdx=164[3x+sin8x8]+C