Expand: (x-1)3.
Use algebraic identity to simplify given expressions
Given expression: (x-1)3Using the algebraic identity: (a–b)3=a3–b3–3ab(a–b)(x–1)3=x3–13–3(x)(1)(x–1) =x3–1–3x(x–1)=x3–1–3x2+3xTherefore, (x–1)3=x3–3x2+3x–1.
Write the following cubes in expanded form:
(i) (2x+1)3
(ii)(2a−3b)3
(iii) (32x+1)3
(iv) (x−23y)3
Expand: (1)(a+2)(a−1)(2) (m−4)(m+6)(3) (p+8)(p−3)(4) (13+x)(13−x)(5) (3x+4y)(3x+5y)(6) (9x−5t)(9x+3t)(7) (m+23)(m−73)(8) (x+1x)(x−1x)(9) (1y+4)(1y−9)