fx=xcosx. Find f'π
Step 1: Differentiate the given function :
Given, fx=xcosx
We know that, ddxU.V=UdVdx+VdUdx
∴ddxxcosx=xddxcosx+cosxddxx=x-sinx+cosx∵ddxcosx=-sinx;ddxx=1∴f'x=cosx-xsinx
Step 2: Substitute π into the derivative obtained.
⇒f'π=cosπ-πsinπ=-1-π0∵cosπ=-1;sinπ=0∴f'π=-1
Hence, the value of f'π is -1
Use the factor theorem to determine whether g(x) is a factor of f(x)
f(x)=22x2+5x+2;g(x)=x+2
Find (42)22.