Find all the solutions of 4cos2xsinx-2sin2x=3sinx.
Find all the solutions of given equation
We can rewrite the given expression as
⇒4(1-sin2x)sinx-2sin2x=3sinx[∵cos2x+sin2x=1]
⇒4sinx-4sin3x-2sin2x-3sinx=0
⇒-4sin3x-2sin2x+sinx=0
⇒-sinx(4sin2x+2sinx-1)=0
⇒sinx=0 or ⇒4sin2x+2sinx-1=0
⇒sinx=sin0 or ⇒sinx=-2±4+162(4)
⇒x=nπ or ⇒sinx=-1±54
⇒x=nπ or ⇒sinx=sinπ10or ⇒sinx=sin-3π10
[∵sinπ10=5-14,sin-3π10=-5+14]
⇒x=nπ,nπ+(-1)nπ10,nπ+(-1)n-3π10 [∵sinθ=sinα⇒θ=nπ+(-1)nα]
Hence, the general solution set is
{x:x=nπ}∪{x:x=nπ+(-1)nπ10}∪{x:x=nπ+(-1)n(-3π10)}