wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find all the solutions of 4cos2xsinx-2sin2x=3sinx.


Open in App
Solution

Find all the solutions of given equation

We can rewrite the given expression as

4(1-sin2x)sinx-2sin2x=3sinx[cos2x+sin2x=1]

4sinx-4sin3x-2sin2x-3sinx=0

-4sin3x-2sin2x+sinx=0

-sinx(4sin2x+2sinx-1)=0

sinx=0 or 4sin2x+2sinx-1=0

sinx=sin0 or sinx=-2±4+162(4)

x=nπ or sinx=-1±54

x=nπ or sinx=sinπ10or sinx=sin-3π10

[sinπ10=5-14,sin-3π10=-5+14]

x=nπ,nπ+(-1)nπ10,nπ+(-1)n-3π10 [sinθ=sinαθ=+(-1)nα]

Hence, the general solution set is

{x:x=nπ}{x:x=nπ+(-1)nπ10}{x:x=nπ+(-1)n(-3π10)}


flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Derivative from First Principles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon