Find the integral of lnx.
Find the integral of the given function
Given function: ln(x)
We know that,
∫udv=uv−∫vdu
Let ,u=ln(x) and dv=dx
⇒du=1xdx and v=x
So,
∫ln(x)dx=ln(x)x−∫x.1xdx=xln(x)-∫dx
=xln(x)-x+C, where C is the integration constant.
Hence, the integral of lnx is xln(x)-x+C where C is the integration constant.