Find the modulus of (1+i)(1-i)-(1-i)(1+i).
Find the modulus:
Let the z=(1+i)(1-i)-(1-i)(1+i)
Solve,
⇒z=(1+i)(1-i)-(1-i)(1+i)⇒z=(1+i)2-(1-i)212-(i)2{i=-1}⇒z=1+(i)2+2i-1-(i)2+2i1-(-1)2⇒z=2i+2i1+1⇒z=4i2=2i
We know that, modulus of z=x+iy is x2+y2
So, for z=0+2i modulus will be,
=02+(2)2⇒(2)2=4=2
Therefore, the modulus is 2.