If p+q=5 and pq=6, then p3+q3=?
Compute the required value:
It is given that p+q=5,pq=6
Using the identity a+b3=a3+b3+3aba+b
⇒p+q3=p3+q3+3pqp+q⇒53=p3+q3+3×6×5⇒125=p3+q3+90⇒p3+q3=125-90⇒p3+q3=35
Hence the value of p3+q3 is 35.
If q is the mean proportional between p and r prove that :
p3+q3+r3p2q2r2=1p3+1q3+1r3