If x+1x=6 find x-1x.
Compute the required value.
It is given that, x+1x=6.
On squaring both sides, we get;
x+1x2=36⇒x2+1x2+2=36⇒x2+1x2=34 {Since, (a+b)2=a2+b2+2ab}
Subtract 2x×1x from both sides.
⇒x2+1x2-2x×1x=34-2x×1x⇒x-1x2=34-2[Since,(a-b)2=a2+b2-2ab]Takingsquarerootonbothsides,weget;⇒x-1x=32⇒x-1x=42×2
Therefore, the value of x-1x is 42.
If f=x1+x2+13(x1+x2)3+15(x1+x2)5+... to ∞ and g=x−23x3+15x5+17x7−29x9+..., then f=d×g. Find 4d.