In figure PQ,PR and BC are the tangents to the circle. BC touches the circle at X. If PQ=7cm find the perimeter of ∆PBC.
Find the perimeter of ∆BPC.
Given: PQ=7cm
Since tangents drawn from external points are equal.
∴PQ=PR(TangentsfrompointP)BQ=BX(TangentsfrompointB)CX=CR(TangentsfrompointC)
Perimeter of ∆PBC,
Perimeter=PB+BC+PC=PB+(BX+XC)+PC(∵BC=BX+XC)=PB+BQ+CR+PC(∵BX=BQ,XC=CR)=PQ+PC(∵PB+BQ=PQ,PC+CR=PR)=7+7(PQ=7cm)=14cm
Hence, the perimeter of ∆BPC is 14cm.