Integrate ∫cos2xcos4xcos6xdx.
Solve the given integral
Given,∫cos2xcos4xcos6xdx
We know that,
cosA.cosB=12cosA+B+cosA-B
So for∫cos2xcos4xcos6xdx, we can write as,
=∫cos2x.12cos10x+cos2xdx
=12∫cos2xcos10x+cos22xdx
∵cos2x=2cos2x-1⇒cos2x=cos2x+12
So, we have
=∫14cos12x+cos8xdx+∫141+cos4xdx
=14∫cos12x+cos8x+cos4x+1dx
=14sin12x12+sin8x8+sin4x4+x+C
Hence, Integration of ∫cos2xcos4xcos6xdx is 14sin12x12+sin8x8+sin4x4+x+C, where C is the arbitrary constant.
(i) Find the integral: ∫dxx2−6x+13 (ii) Find the integral: ∫dx3x2+13x−10 (iii) Find the integral: ∫dx√5x2−2x