Prove that (cosA-sinA+1)(cosA+sinA-1)=cosecA+cotA.
L.H.S=(cosA-sinA+1)(cosA+sinA-1)
Divide numerator and denominator with sinA.
=(cosAsinA-sinAsinA+1sinA)(cosAsinA+sinAsinA-1sinA)
=(cotA–1+cosecA(cotA+1–cosecA)
=cotA+cosecA-cosec2A-cot2A(cotA+1–cosecA)……………………..[(1+cot2θ=cosec2θ)]
=cotA+cosecA-cosecA+cotAcosecA-cotAcotA+1-cosecA………………….([a2-b2=(a+b)(a-b)])
=(cotA+cosecA)(1–cosecA+cotA)(cotA+1–cosecA)
=(cotA+cosecA)(1–cosecA+cotA)(1–cosecA+cotA)
=(cotA+cosecA)
=R.H.S.
Hence, it is proved that, (cosA-sinA+1)(cosA+sinA-1)=cosecA+cotA.