Prove that : sin105°+cos105°=cos45°.
Use the trigonometry identity:
sin105°+cos105°=cos45°.
Taking LHS sin105°+cos105°=cos45°.
Firstly sin105°=sin(60+45)°
Also cos105°=cos(60+45)°
As we know that sin(A+B)=sinAcosB+cosAsinB
Also, cos(A+B)=cosAcosB–sinAsinB
sin105°+cos105°=sin(60+45)°+cos(60+45)°=sin60°cos45°+cos60°sin45°+cos60°cos45°–sin60°sin45°=cos45°(sin60°+cos60°)+sin45°(cos60°–sin60°)=cos45°(sin60°+cos60°+cos60°–sin60°)(∵cos45°=sin45°)=cos45°(2cos60°)=cos45°2×12=cos45°.
Hence proved.
Prove that :
5/4×(54/48+105/75)=(5/4×54/48)+(5/4×105/75)