Prove that (sinθ-cosθ+1)(sinθ+cosθ-1)=1(secθ-tanθ).
Solving the function using trigonometric identities:
As we have (sinθ-cosθ+1)(sinθ+cosθ-1)=1(secθ-tanθ).
LHS =(sinθ–cosθ+1)(sinθ+cosθ–1)
Dividing the numerator and denominator by cosθ
sinθcosθ–cosθcosθ+1cosθsinθcosθ+cosθcosθ–1cosθ
=(tanθ–1+secθ)(tanθ+1–secθ)
Multiplying and dividing by (tanθ–secθ),
=(tanθ+secθ–1)(tanθ–secθ+1)×(tanθ–secθ)(tanθ–secθ)(tanθ+secθ)((tanθ–secθ=tan2θ–sec2θ)=[(tan2θ–sec2θ–(tanθ–secθ)][(tanθ–secθ+1)(tanθ–secθ)]
Using the identity sec2θ–tan2θ=1,
=(-1–tanθ+secθ)[(tanθ–secθ+1)(tanθ–secθ)]=-1(tanθ–secθ)=1(secθ–tanθ)
= RHS
Hence proved.
Prove that √sec θ−1sec θ+1+√sec θ+1sec θ−1=2 cosec θ