prove that tan70°=tan20°+2tan50°
To prove: tan70°=tan20°+2tan50°
Take:
tan70=tan(20+50)∵tan(A+B)=(tanA+tanB)1–tanAtanB⇒tan70=(tan20+tan50)1–tan20tan50⇒tan70(1–tan20tan50)=tan20+tan50⇒tan70–tan70tan20tan50=tan20+tan50⇒tan70−tan50=tan20+tan50(∵tan70tan20=1)⇒tan70=tan20+2tan50
Hence proved.