wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove the following: (sinα+cosα)(tanα+cotα)=secα+cosecα


Open in App
Solution

To prove (sinα+cosα)(tanα+cotα)=secα+cosecα.

Consider L.H.S:

LHS=(sinα+cosα)(tanα+cotα)=(sinα+cosα)sinαcosα+cosαsinαtanα=sinαcosαandcotα=cosαsinα=(sinα+cosα)sin2α+cos2αsinα·cosα=(sinα+cosα)1sinα·cosαsin2α+cos2α=1=sinα+cosαsinα·cosα=sinαsinα·cosα+cosαsinα·cosα=1cosα+1sinα=secα+cosecα1cosα=secαand1sinα=cosecα=RHS

Thus LHS=RHS

Hence, (sinα+cosα)(tanα+cotα)=secα+cosecα is proved.


flag
Suggest Corrections
thumbs-up
39
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon