Prove the following: (sinα+cosα)(tanα+cotα)=secα+cosecα
To prove (sinα+cosα)(tanα+cotα)=secα+cosecα.
Consider L.H.S:
LHS=(sinα+cosα)(tanα+cotα)=(sinα+cosα)sinαcosα+cosαsinα∵tanα=sinαcosαandcotα=cosαsinα=(sinα+cosα)sin2α+cos2αsinα·cosα=(sinα+cosα)1sinα·cosα∵sin2α+cos2α=1=sinα+cosαsinα·cosα=sinαsinα·cosα+cosαsinα·cosα=1cosα+1sinα=secα+cosecα∵1cosα=secαand1sinα=cosecα=RHS
Thus LHS=RHS
Hence, (sinα+cosα)(tanα+cotα)=secα+cosecα is proved.