Show that:tan48°tan23°tan42°tan67°=1
To prove:
tan48°tan23°tan42°tan67°=1
L.H.S =tan48°tan23°tan42°tan67°
We can write
tan48°=tan(90°–42°)=cot42°tan23°=tan(90°–67°)=cot67° [∵tan(900-θ)=cotθ]
tan48°×tan23°×tan42°×tan67°=tan(90°–42°)×tan(90°–67°)×tan42°×tan67° [∵tan(900-θ)=cotθ]
Substitute the values in L.H.S, we get
L.H.S =cot42°×cot67°×tan42°×tan67°
=(cot42°×tan42°)(cot67°×tan67°)
=1×1 [∵cotθ=1tanθ⇒cotθ.tanθ=1]
=1
∴LHS=RHS
Thus,tan48°tan23°tan42°tan67°=1
Hence Proved
Show that tan48∘tan23∘tan42∘tan67∘=1