wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Show that:tan48°tan23°tan42°tan67°=1


Open in App
Solution

To prove:

tan48°tan23°tan42°tan67°=1

L.H.S =tan48°tan23°tan42°tan67°

We can write

tan48°=tan(90°42°)=cot42°tan23°=tan(90°67°)=cot67° [tan(900-θ)=cotθ]

tan48°×tan23°×tan42°×tan67°=tan(90°42°)×tan(90°67°)×tan42°×tan67° [tan(900-θ)=cotθ]

Substitute the values in L.H.S, we get

L.H.S =cot42°×cot67°×tan42°×tan67°

=(cot42°×tan42°)(cot67°×tan67°)

=1×1 [cotθ=1tanθcotθ.tanθ=1]

=1

LHS=RHS

Thus,tan48°tan23°tan42°tan67°=1

Hence Proved


flag
Suggest Corrections
thumbs-up
41
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Conditional Identities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon