Simplify: (a+b+c)(a+b-c)
Given: (a+b+c)(a+b-c)
(a+b+c)(a+b–c)=(a+b+c)×(a+b–c)
=a×(a+b–c)+b×(a+b–c)+c×(a+b–c)=(a×a)+(a×b)–(a×c)+(b×a)+(b×b)–(b×c)+(c×a)+(c×b)–(c×c)
=a2+ab–ac+ba+b2–bc+ca+cb–c2=a2+b2–c2+ab+ab–ac+ac–bc+bc
=a2+b2–c2+2ab
Hence, the value of (a+b+c)(a+b-c) is a2+b2–c2+2ab.