Prove: sin2A+sin2Bsin2A-sin2B=tanA+BtanA-B.
Given, sin2A+sin2Bsin2A-sin2B=tanA+BtanA-B
We know that
sinA+B=2sinA+B2cosA-B2sinA-B=2sinA-B2cosA+B2
Now, consider
sin2A+sin2B=2sin2A+2B2cos2A-2B2sin2A+sin2B=2sinA+BcosA-B
Similarly
sin2A-sin2B=2sin2A-2B2cos2A+2B2sin2A-sin2B=2sinA-BcosA+B
∴sin2A+sin2Bsin2A-sin2B=2sinA+BcosA-B2sinA-BcosA+B=sinA+BcosA+B×cosA-BsinA-B=tanA+B×cotA-B=tanA+BtanA-B
Hence proved.