Solve for 2x+5y=83and 3x-2y=56
The given equations are:
2x+5y=83.............(1)
3x-2y=56................(2)
Step 1: Multiplying equation(1) by 2 and equation2 by 5,
2x+5y=83.................(1)×2⇒4x+10y=163...(3)3x-2y=56.................(2)×5⇒15x-10y=256...(4)
Step 2: Adding equation 3 and equation 4,
4x+10y=163+15x-10y=25619x+0=163+256⇒19x=32+256⇒19x=576⇒x=5736×19⇒x=36⇒x=12
Step 3: Substituting x=12in equation 1
2x+5y=83⇒2×12+5y=83⇒1+5y=83⇒5y=83-1⇒5y=53⇒y=13
Therefore,x=12 and y=13 is the solution of given equations.
Solve the following pair of linear equations by the elimination method and the substitution method :
(i) x+y=5 and 2x−3y=4 (ii) 3x+4y=10 and 2x−2y=2(iii) 3x−5y−4=0 and 9x=2y+7(iv) x2+2y3=−1 and x−y3=3
Find the product : 112×56×815×34
Solve for x and y: 3x + 2y = 11 and 2x + 3y = 4. Also find p if p = 8x + 5y