Solve following equation:
-x2+x-2=0
1±7i2
-1±7i2
2±7i2
-2±7i2
Given: -x2+x-2=0
We know that the general form of quadratic equation is ax2+bx+c=0
Comparing the given equation with the general form of the quadratic equation , we get;
a=-1,b=1andc=-2
Now, using quadratic formula, x=-b±b2-4ac2a
So,
x=-1±12-4×-1×-22×-1=-1±1-8-2=-1±-7-2=1±7i2
Hence, the value of x=1±7i2
solve following quadratic equation : 2x/x-4 + 1/x-2 + 2/x2-6x+8 =0