Solve for x: (x-2)(x-3)+(x-4)x-5=103,x≠3,5
(x-2)(x-3)+(x-4)x-5=103
(x-2)x-5+x-4x-3(x-3)x-5=103
x2-5x-2x+10+x2-3x-4x+12x2-5x-3x+15=103
2x2-14x+22x2-8x+15=103
32x2-14x+22=10x2-8x+15
6x2-42x+66=10x2-80x+150
10x2-80x+150-6x2+42x-66=0
4x2-38x+84=0
2x2-19x+42=0(dividing the whole equation by 2)
Using the factorization method,
2x2-12x-7x+42=0
2x(x-6)-7(x-6)=0
2x-7(x-6)=0
2x-7=0orx-6=0x=72orx=6
Hence, the required value is x=72orx=6
Solve for x and y:
12(3x+y)+53(3x−y)=−3254(x+2y)−35(3x−2y)=6160.
Solve for x:
x-1x-2+x-3x-4=313,x≠2,4
22x-1x+3-3x+32x-1=5 given that x≠-3,x≠12
Rewrite the following as a quadratic equation in x and then solve for x:
4x-3=52x+3,x≠0,-32.