Solve: sin10+sin20+sin40+sin50
Step 1: Use sinC+sinD rule
The given expression is sin10+sin20+sin40+sin50
=sin10+sin20+sin40+sin50
=(sin10+sin50)+(sin20+sin40)
=(2sin30cos20)+2sin30cos10 [SinC+SinD=2SinC+D2cosC-D2]
=2sin30(cos10+cos20)
Step 2: Use the identity of Cos(90-θ)
=2×12(cos(90-80)+cos(90-70)) [Cos90-θ=Sinθ]
=sin80+sin70
Hence, sin10+sin20+sin40+sin50=sin80+sin70