wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

Solve: sin10+sin20+sin40+sin50


Open in App
Solution

Step 1: Use sinC+sinD rule

The given expression is sin10+sin20+sin40+sin50

=sin10+sin20+sin40+sin50

=(sin10+sin50)+(sin20+sin40)

=(2sin30cos20)+2sin30cos10 [SinC+SinD=2SinC+D2cosC-D2]

=2sin30(cos10+cos20)

Step 2: Use the identity of Cos(90-θ)

=2×12(cos(90-80)+cos(90-70)) [Cos90-θ=Sinθ]

=sin80+sin70

Hence, sin10+sin20+sin40+sin50=sin80+sin70


flag
Suggest Corrections
thumbs-up
28
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Identities_Concept
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon