The value of (tan1°tan2°tan3°⋯⋯⋯⋯⋯⋯tan89°) is
0
1
2
12
Use the trigonometric identity tan(90-θ)=cotθ and tanθ=1cotθ
Here we have ,
tan1°tan2°tan3°⋯⋯⋯⋯⋯⋯⋯⋯tan89°=tan1°tan2°tan3°⋯⋯⋯⋯⋯tan45°tan46°tan47°⋯⋯tan88°tan89°
We know that tan45°=1
tan1°tan2°tan3°⋯⋯⋯tan44°.1.tan46°tan47°⋯⋯tan88°tan89°=tan1°tan2°tan3°⋯⋯tan44°.1.tan(90-44)°tan(90-43)°⋯⋯tan(90-2)°tan(90-1)°
We also know that tan(90-θ)=cotθ and tanθ=1cotθ
tan1°tan2°tan3°⋯⋯⋯tan44°.1.cot44°cot43°cot42°⋯cot3°cot2°cot1°=tan1°tan2°tan3°⋯⋯tan44°.1.1tan44°.1tan43°.1tan42°⋯1tan3°.1tan2°.1tan1°=1
Hence option(2) is the correct answer and all other options are incorrect answers.
The value of √2√2√2⋯⋯⋯∞ is 2.
Complete the table and by inspection of the table find the solution to the equation.
m+10=16
m12345678910⋯⋯⋯m+10⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯