What is the integration of cotx?
Find the integration of cotx.
∫cotxdx=∫cosxsinxdx...(1)
Let sinx=u
So, cosxdx=du.
Put the above values in the equation(1):
∫cotxdx=∫duu∫cotxdx=ln|u|+C∫cotxdx=ln|sinx|+C
Hence, the required integral is ∫cotxdx=ln|sinx|+C where C is a constant of integration .