SEBA Board Class 9 Maths Syllabus

SEBA Board Class 9 Maths syllabus is prescribed by the Board of Secondary Education. Mathematics syllabus is designed according to the psychological acceptance level of students without compromising the quality. Students are given ample exercise problems and assignments for consistent practice and better understanding. SEBA Board Class 9 Maths syllabus comprises principal area of proofs in mathematics and mathematical modeling. That includes – Number Systems, Algebra, Coordinate Geometry, Geometry, Mensuration, Statistics and Probability.

Click the link given below to download FREE PDF of SEBA Board Class 9 Mathematics syllabus:

Download SEBA Board Class 9 Mathematics syllabus PDF

Mathematics is called the ‘Queen of the Sciences’. Because the moment we wake up until we go to bed each and every activity involves calculations. That is mathematics embedded in our daily routine without our knowledge. Students often find mathematics as a hard bite.

Refer the table given below for detailed syllabus of SEBA Board Class 9:

1.Real numbers Review of representation of natural numbers, integers, rational numbers on the number line. Representation of terminating/non-terminating recurring decimals, on the number line through successive magnification. Rational numbers as recurring/terminating decimals.

Examples of non recurring/non terminating decimals such as √2,√3,√5 etc. Existence of non-rational numbers (irrational numbers) such as √2,√3 and their representation on the number line. Explaining that every real number is represented by a unique point on the number line, and conversely, every point on the number line represents a unique real number.

Existence of √x for a given positive real number x (visual proof to be emphasized). Definition of nth root of real number.

Recall of laws of exponents with integral powers. Rational exponents with positive real bases (to be done by particular cases, allowing the learner to arrive at the general laws.) Rationalisation (with precise meaning) of real number of the type (and their combinations)

1/a+b√x and 1/√x+√y where x and yare natural numbers and a , b are integers.

20 sessions.
2. Polynomials coefficients, with examples and counterexamples, its terms, zero polynomial. Degree of a polynomial. Constant, linear, quadratic, cubic polynomials; monomials, binomials, trinomials. Factors and multiples. Zeros/roots of a polynomial/equation. State and motivate the Remainder Theorem with examples and analogy to integers. Statement and proof of the Factor Theorem. Factorisation of ax2+bx+c, a\(\neq\)0 where a,b,c are real numbers, and of cubic polynomials using the Factor Theorem.

Recall of algebraic expressions and identities. Further identities of the type:

and their use in factorization of polynomials. Simple expressions reducible to these polynomials.

25 sessions
3. Coordinate Geometry The Cartesian plane, coordinates of a point, names and terms associated with the coordinate plane, notations, plotting points in the plane, graph of linear equations as examples; focus on linear equations of the type ax+by+c=0 by writing it as y=mx+c and linking with the chapter on linear equations in two variables. 09 Sessions

Linear Equations in Two Variables

Recall of linear equations in one variable. Introduction to the equation in two variables. Prove that a linear equation in two variables has infinitely many solutions, and justify their being written as ordered pairs of real numbers, plotting them and showing that they seem to lie on a line. Examples, problems from real life, including problems on Ratio and Proportion and with algebraic and graphical solutions being done simultaneously. 20 sessions
1. Introduction to Euclid’s Geometry History-Euclid and geometry in India. Euclid’s method of formalizing observed phenomenon into rigorous mathematics with definitions, common/obvious notions, axioms/postulates and theorems. The five postulates of Euclid. Equivalent versions of the fifth postulate. Showing the relationship between axiom and theorem.

  1. Given two distinct points, there exists one and one only one line through them.
  2. (Prove) Two distinct lines cannot have more than one point in common.
06 sessions
2. Lines and Angles
  1. (Motivate) If a ray stands on a line, then the sum of the two adjacent angles so formed is 180oand the converse.
  2. (Prove) If two lines intersect, vertically opposite angles are equal.
  3. (Motivate) Results on corresponding angles, alternate angles, interior angles when a transversal intersects two parallel lines.
  4. (Motivate) Lines, which are parallel to a given line, are parallel.
  5. (Prove) The sum of the angles of a triangle is 180o.
  6. (Motivate) If a side of a triangle is produced, the exterior angle so formed is equal to the sum of the two interior opposite angles.
10 sessions
3. Triangles
  1. (Motivate) Two triangles are congruent if any two sides and the included angle of one triangle is equal to any two sides and the included angle of the other triangle (SAS) Congruence).
  2. (Prove) Two triangles are congruent if any two angles and the included side of one triangle is equal to any two angles and the included side of the other triangle (ASA Congruence).
  3. (Motivate) Two right triangles are congruent if the three sides of one triangle are equal to three sides of the other triangle (SSS Congruence).
  4. (Motivate) Two right triangles are congruent if the hypotenuse and a side of one triangle are equal (respectively) to the hypotenuse and a side of the other triangle.
  5. (Prove) The angles opposite to equal sides of a triangle are equal.
  6. (Motivate) The sides opposite to equal angles of a triangle are equal.
  7. (Motivate) Triangle inequalities and relations between ‘angle and facing side’; inequalities in a triangle.
20 sessions
4. Quadrilaterals
  1. (Prove) The diagonal divides a parallelogram into two congruent triangles.
  2. (Motivate) In a parallelogram opposite sides are equal and conversely.
  3. (Motivate) In a parallelogram opposite angles are equal and conversely.
  4. (Motivate) A quadrilateral is a parallelogram if a pair of its opposite sides are parallel and equal.
  5. (Motivate) In a parallelogram, the diagonals bisect each other and conversely.
  6. (Motivate) In a triangle, the line segment joining the mid points of any two sides is parallel to the third side and (motivate) its converse.
10 sessions
5. Area Review the concept of area, recall the area of a rectangle.

  1. (Prove) Parallelograms on the same base and between the same parallels have the same area.
  2. (Motivate) Triangle on the same base and between the same parallels are equal in area and its converse.
04 sessions
6. Circle Through examples, arrive at definitions of circle related concepts, radius, circumference, diameter, chord, arc, subtended angle.

  1. (Prove) Equal chords of a circle subtend equal angles at the centre and (motivate) its converse.
  2. (Motivate) The perpendicular from the centre of a circle to a chord bisects the chord and conversely, the line drawn through the centre of a circle to bisect a chord is perpendicular to the chord.
  3. (Motivate) There is one and only one circle passing through three given non-collinear points.
  4. (Motivate) Equal chords of a circle (or of congruent circles) are equidistant from the centre (s) and conversely.
  5. (Prove) The angle subtended by an arc at the centre is double the angle subtended by it at any point on the remaining part of the circle.
  6. (Motivate) Angles in the same segment of a circle are equal.
  7. (Motivate) If a line segment joining two points subtends equal angle at two other points lying on the same side of the line containing the segment, the four points lie on a circle.
  8. (Motivate) The sum of either pair of opposite angles of a cyclic quadrilateral is 180o and its converse.
15 sessions
7. Constructions
  1. Construction of bisectors of a line segment and angle, 60o,45o,90oangles etc, equilateral triangles.
  2. Construction of a triangle given its base, sum/ difference of the other two sides and one base angle.
  3. Construction of a triangle of given perimeter and base angles.
10 sessions
1. Areas Area of a triangle using Heron’s formula (without proof) and its application in finding the area of a quadrilateral. 04 sessions
2.Surface Areas and Volumes Surface areas and volumes of cubes, cuboids, spheres (including hemispheres) and right circular cylinders/cones. 10 sessions
1. Statistics Introduction to Statistics : Collection of data, presentation of data- tabular form, ungrouped/ grouped, bar graphs, histograms (with varying base lengths), frequency polygons, qualitative analysis of data to choose the correct form of presentation for the correct data. Mean, median, mode of ungrouped data. 13 sessions
2. Probability History, Repeated experiments and observed frequency approach to probability. Focus is on empirical probability. (A large amount of time to be devoted to group and to individual activities to motivate the concept; the experiments to be drawn from real-life situations, and from the examples used in the chapter on statistics). 12 sessions

Unitwise Marking weighatge of SEBA Class 9 Maths syllabus

Sl No Chapters Marks
Half Yearly Annual
1 Number system 12 7
2 Polynomials 20 13
3 Coordinate geometry 8 4
4 Linear Equation in two variables 12 6
5 Introduction to Euclid’s Geometry 6 2
6 Lines and Angles 8 4
7 Triangles 12 6
8 Quadrilaterals 12 6
9 Areas of Parallelograms and Triangles 6
10 Circles 9
11 Constructions 4
12 Heron’s Formula 4
13 Surface Area and Volumes 9
14 Statistics 7
15 Probability 3
Theory Total 90 90
Internal Assessment 10 10
Grand Total 100 100

Learn Maths & Science in an interactive & fun-loving way with BYJU’S App/Tablet.

Leave a Comment

Your email address will not be published. Required fields are marked *