Inverse Hyperbolic Functions Formula

The hyperbolic sine function is a one-to-one function and thus has an inverse. As usual, the graph of the inverse hyperbolic sine function $sinh^{-1}(x)$ also denoted by $arcsinh(x)$ by reflecting the graph of $sinh(x)$ about the line $y=x$

For all inverse hyperbolic functions but the inverse hyperbolic cotangent and the inverse hyperbolic cosecant, the domain of the real function is connected.

Inverse hyperbolic sine (if the domain is the whole real line)

\[\large arcsinh\;x=ln(x+\sqrt {x^{2}+1}\]

Inverse hyperbolic cosine (if the domain is the closed interval $(1, +\infty )$.

\[\large arccosh\;x=ln(x+\sqrt{x^{2}-1})\]

Inverse hyperbolic tangent [if the domain is the open interval (−1, 1)]

\[\large arctanh\;x=\frac{1}{2}\;ln\left(\frac{1+x}{1-x} \right )\]

Inverse hyperbolic cotangent [if the domain is the union of the open intervals (−∞, −1) and (1, +∞)]

\[\large arccoth\;x=\frac{1}{2}\;ln\left(\frac{x+1}{x-1} \right )\]

Inverse hyperbolic cosecant (if the domain is the real line with 0 removed)

$\large arccsch\;x=ln\left(\frac{1}{x}+\sqrt{\frac{1}{x^{2}}+1}\right)$

Inverse hyperbolic secant (if the domain is the semi-open interval 0, 1)

$\large arcsech\;x=ln\left(\frac{1}{x}+\sqrt{\frac{1}{x^{2}}-1}\right)=ln\left(\frac{1+\sqrt{1-x^{2}}}{x}\right)$

Derivatives formula of Inverse Hyperbolic Functions

\[\large \frac{d}{dx}sinh^{-1}x=\frac{1}{\sqrt{x^{2}+1}}\]

\[\large \frac{d}{dx}cosh^{-1}x=\frac{1}{\sqrt{x^{2}-1}}\]

\[\large \frac{d}{dx}tanh^{-1}x=\frac{1}{1-x^{2}}\]

\[\large \frac{d}{dx}coth^{-1}x=\frac{1}{1-x^{2}}\]

\[\large \frac{d}{dx}sech^{-1}x=\frac{-1}{x\sqrt{1-x^{2}}}\]

\[\large \frac{d}{dx}csch^{-1}x=\frac{-1}{|x|\sqrt{1-x^{2}}}\]

 

Leave a Comment

Your email address will not be published. Required fields are marked *