Thin Lens Formula with Magnification for Concave and Convex Lenses
First, what is a thin lens? If the thickness of a lens is negligible in comparison to the radius of curvature, it is a thin lens. The following typical equation is used to determine a relation between the focal length of the lens, the distance of the object, and the distance of the image.
f is the focal length
v is the distance of the image from the optical centre
u is the distance of the object from the optical centre
If the focal length is negative, it implies that the lens is concave (diverging), while if positive it implies that the lens is convex (converging lenses). If the image distance is calculated to be negative, it implies that the image formed is virtual and on the same side as the object.
The following video explains the thin lens formula
The magnification (M) of the image formed can be calculated using the following formula.
Where,
v is the object height
u is the image height
If ‘i’ is positive, the image is upright and if ‘i’ is negative, the image is inverted.
The two formulas given above are together referred to as the thin lens formula. You can try the following sample problem using this.
A 4 cm tall candle is placed in front of a double convex lens. The lens has a focal length of 15.2 cm. The object has been placed 45.7 cm from the vertex. Where will the image be formed and what will its size be?
Ans: Image distance = 22.8 cm; Image Height = -1.99 cm
Watch the video and understand the concepts of Lens Formula, Magnification and Power of Lens
Frequently Asked Questions – FAQs
What is a lens?
What are the two common types of lenses?
What is a contact lens?
What is the connection between the focal length and the refractive index of a lens?
What are the important uses of lenses?
Watch the video and revise all the important concepts in the chapter Light Reflection and Refraction Class 10
Stay tuned to BYJU’S and Fall in Love with Learning!
Comments