Checkout JEE MAINS 2022 Question Paper Analysis : Checkout JEE MAINS 2022 Question Paper Analysis :

Discovery of Neutron, Isotopes, Isobars and Isotones

Introduction

It is a remarkable fact the existence of neutron was not discovered until 1932. The general atomic imagination of the time was protons and electrons. Through Rutherford’s alpha scattering experiments, it was found that the Atomic mass number A of an element is a bit more than twice the atomic number Z for most atoms and that essentially, all the mass of an atom was concentrated in a very tiny space at the centre of the atom. The alpha particles that took a 180-degree turn stand as proof of this.

Until 1930, a few electrons were thought to coexist with the protons in the dense nucleus, but the immense amount of energy required to sustain such a system was way beyond atomic energy. If we take the size of a Hydrogen atom as 0.2 nanometers, then the electron confinement energy is 38eV which is the correct magnitude for atomic electrons. But if the electron were to coexist with the protons in the nucleus, the electron confinement energy is approximately 250Mev! Many magnitudes huger than the 38eV.

Who discovered the Neutron?

James Chadwick discovered the neutron particle. A breakthrough came when it was shown that the bombardment of Beryllium with alpha particles from a radioactive source yielded penetrating but non-ionizing radiation. Such neutral radiation confounded the scientists since the only known neutral radiation was photons. Had it been a photon, the neutral radiation would exit the beryllium atom with far more energy than it does.

What is a Neutron?

The answer to this puzzle was provided by James Chadwick, who boldly stated that this was a new type of fundamental particle that is neutral, and he called them Neutrons. From the conservation of energy and momentum, he was able to derive with considerable accuracy the mass of this new particle. He found that the mass of a neutron was very close to that of a proton.

MN = 1.00866 u = 1.6749 X 10-27 kg

So now the nucleus had another resident, and the proton-neutron pair was called a Nucleon. The discovery of Neutron led to a better understanding of atomic mass and atomic number also with isotopes which is what radioactivity is based on!

  • Z – Atomic Number = number of protons/ electrons
  • N – Neutron Number = Number of Neutron
  • A – Atomic Mass Number = Z + N = Total number of protons and neutrons

So now the elements of the periodic table had a new form of representation;

For example, the nucleus of a Uranium atom is represented by a 23592 U, which means that one atom of Uranium 235 contains 235 nucleons, of which 92 are protons, and the rest 143 are neutrons.

What are Isotopes?

Isotopes are variants of a particular element with different numbers of neutrons. For example, the two isotopes of Uranium are, 23592 U and 23992 U. You will see here that the number of protons is the same in both the isotopes, but they contain 143 and 147 neutrons, respectively. The presence of an extra neutron significantly changes the behaviour of that particular atom. There are two different types of isotopes, stable and radioactive. Stable isotopes can exist in their free state without breaking down spontaneously. Radioactive isotopes are too unstable to sustain themselves, and they spontaneously break down into two lighter daughter elements with the emission of particles such as alpha, beta, and gamma rays.

What are Isobars?

Isobars are elements that have the same number of nucleons (sum of protons and neutrons). The series of elements with 40 Mass numbers serve as a good example; 4016S, 4017Cl, 4018Ar, 4019K, and 4020Ca. The nucleus of all the above-mentioned elements contain the same number of particles in the nucleus but contain varying numbers of protons and neutrons.

What are Isotones?

Isotones are atoms that have the same neutron number but different proton number. For example, 3616S, 3717Cl, 3818Ar, 3919K, and 4020Ca are all isotones of 20 since they all contain 20 neutrons.

Nuclear energy and Radioactivity relies on the unstable isotopes of heavy elements to tap the explosive power of the nucleus. The discovery of one fundamental particle unlocked such amazing doors for humanity!

Watch the video and learn about the discovery of electrons.

If you wish to learn more physics concepts with the help of interactive video lessons, download BYJU’S – The Learning App.

Frequently Asked Questions – FAQs

What is a neutron?

A neutron is an electrically neutral particle with a mass roughly equal to that of a hydrogen atom. Fundamentally, it is a subatomic particle existing in the nucleus of an atom except in normal hydrogen.

Who discovered the neutron?

James Chadwick discovered the neutron.
A breakthrough came when it was shown that the bombardment of Beryllium with alpha particles from a radioactive source yielded penetrating but non-ionizing radiation.
James Chadwick provided the answer to this puzzle. He stated that this was a new type of fundamental particle that is neutral, and he called them Neutrons.

What is an isotope?

Isotope is a variant of a particular element with a different number of neutrons. The presence of an extra neutron significantly changes the behaviour of that particular atom.

What are the two types of isotopes?

There are two different types of isotopes, stable and radioactive. Stable isotopes are ones that can exist in their free state without breaking down spontaneously. Radioactive isotopes are ones that are too unstable to sustain themselves.

What is an isobar?

Isobars are elements with the same number of nucleons (sum of protons and neutrons). However, they may contain varying numbers of protons and neutrons.
Test your Knowledge on Neutrons Isotopes Isobars Isotones

Leave a Comment

Your Mobile number and Email id will not be published.

*

*

close
close

DOWNLOAD

App NOW