Galvanic Cell

What is an galvanic cell?

An electrochemical cell that converts the chemical energy of spontaneous redox reactions into electrical energy is known as galvanic cell or a voltaic cell. Electric work done by galvanic cell is mainly due to the Gibbs energy of spontaneous redox reaction in the voltaic cell. It generally consists of two half cells and a salt bridge. Each half cell further consists of metallic electrode dipped into an electrolyte. These two half-cells are connected to a voltmeter and a switch externally with the help of metallic wires. In some cases, when both the electrodes are dipped in same electrolyte, salt bridge is not required.

Galvanic Cell

Galvanic Cell

Working of a of galvanic cell

In a galvanic cell, when an electrode is exposed to the electrolyte at electrode-electrolyte interface, the atoms of metal electrode have a tendency to generate ions in the electrolyte solution leaving behind the electrons at the electrode. Thus, making the metal electrode negatively charged. While at the same time metal ions in the electrolyte solution too, have a tendency to deposit on metal electrode. Thus, making the electrode positively charged.

Under equilibrium condition, charge separation is observed and depending on tendencies of two opposing reactions, the electrode can be positively or negatively charged. Hence, a potential difference is developed between the electrode and electrolyte. This potential difference is known as electrode potential. Out of two electrodes, the electrode at which oxidation takes place is called anode while the electrode at which reduction takes place is called cathode. The anode has a negative potential with respect to solution while the cathode has a positive potential with respect to the solution. Thus, a potential difference develops between two electrodes of the galvanic cell. This potential difference is known as cell potential. When no current is drawn from the galvanic cell, cell potential is known as electromotive force of galvanic cell. When the switch is set on, due to the potential difference, electrons flow from the negative electrode to the positive electrode.

Example of galvanic cell

Daniel cell is an example of galvanic cell which converts chemical energy into electrical energy. In Daniel cell, copper ions are reduced at cathode while zinc is oxidized at anode.

Reactions of Daniel cell at cathode and anode are:

At cathode: Cu 2+ + 2e\(\rightarrow\) Cu

At anode: Zn \(\rightarrow\) Zn2+ + 2e

For detailed discussions on different cells like galvanic cell or voltaic cell, or about the Spontaneity Of A Process please visit Byju’s.

Practise This Question

Which of the following conversion takes place in a galvanic cell?