GATE Biotechnology Syllabus

Candidates who plan to appear for the GATE Exams 2022 can find the latest GATE 2022 Syllabus for Biotechnology from this article. In addition, the Indian Institute of Technology will release the official brochure for the Graduate Aptitude Test in Engineering (GATE) and the updated GATE Biotechnology Syllabus for the current academic year on the official website for the candidates to start their exam preparations accordingly.

While there are about 27 subjects for the GATE Exams, Biotechnology Engineering is a primary subject with its subject code BT. The students can select this paper along with the relative secondary paper for the exam. Students who follow the GATE syllabus, reference material and marking scheme as required will ace the exams more proficiently.

GATE Syllabus for Biotechnology 2022

Meanwhile, here in this article, we compile the main topics from the GATE BT Syllabus 2022. The GATE 2022 Syllabus for Biotechnology is divided into seven main sections and the chief topics discussed under these sections are Engineering Mathematics, General Biology, Genetics, Cellular and Molecular Biology, Fundamentals of Biological Engineering, Bioprocess Engineering and Process Biotechnology, Plant, Animal and Microbial Biotechnology and Recombinant DNA technology and Other Tools in Biotechnology.

Candidates can access the GATE Biotech Syllabus from below and start preparing for the exams.

Download PDF of GATE Syllabus for Biotechnology

The GATE BT Syllabus is divided into the GA or General Aptitude and the Biotechnology section.

GATE Biotechnology Syllabus 2022

SECTIONS TOPICS
Section 1: Engineering Mathematics
  • Linear Algebra: Matrices and determinants; Systems of linear equations; Eigen values and Eigen vectors.
  • Calculus: Limits, continuity and differentiability; Partial derivatives, maxima and minima; Sequences and series; Test for convergence.
  • Differential Equations: Linear and nonlinear first order ODEs, higher order ODEs with constant coefficients; Cauchy’s and Euler’s equations; Laplace transforms.
  • Probability and Statistics: Mean, median, mode and standard deviation; Random variables; Poisson, normal and binomial distributions; Correlation and regression analysis.
  • Numerical Methods: Solution of linear and nonlinear algebraic equations; Integration by trapezoidal and Simpson’s rule; Single step method for differential equations.
Section 2: General Biology
  • Biochemistry: Biomolecules – structure and function; Biological membranes – structure, membrane channel and pumps, molecular motors, action potential and transport processes; Basic concepts and regulation of metabolism of carbohydrates, lipids, amino acids and nucleic acids; Photosynthesis, respiration and electron transport chain. Enzymes – Classification, catalytic and regulatory strategies; Enzyme kinetics – Michaelis- Menten equation; Enzyme inhibition – competitive, non-competitive and uncompetitive inhibition.
  • Microbiology: Bacterial classification and diversity; Microbial Ecology – microbes in marine, freshwater and terrestrial ecosystems; Microbial interactions; Viruses – structure and classification; Methods in microbiology; Microbial growth and nutrition; Nitrogen fixation; Microbial diseases and host-pathogen interactions; Antibiotics and antimicrobial resistance.
  • Immunology: Innate and adaptive immunity, humoral and cell mediated immunity; Antibody structure and function; Molecular basis of antibody diversity; T cell and B cell development; Antigen-antibody reaction; Complement; Primary and secondary lymphoid organs; Major histocompatibility complex (MHC); Antigen processing and presentation; Polyclonal and monoclonal antibody; Regulation of immune response; Immune tolerance; Hypersensitivity; Autoimmunity; Graft versus host reaction; Immunization and vaccines.
Section 3: Genetics, Cellular and Molecular Biology
  • Genetics and Evolutionary Biology: Mendelian inheritance; Gene interaction; Complementation; Linkage, recombination and chromosome mapping; Extra chromosomal inheritance; Microbial genetics – transformation, transduction and conjugation; Horizontal gene transfer and transposable elements; Chromosomal variation; Genetic disorders; Population genetics; Epigenetics; Selection and inheritance; Adaptive and neutral evolution; Genetic drift; Species and speciation.
  • Cell Biology: Prokaryotic and eukaryotic cell structure; Cell cycle and cell growth control; Cell-cell communication; Cell signalling and signal transduction; Post-translational modifications; Protein trafficking; Cell death and autophagy; Extra-cellular matrix.
  • Molecular Biology: Molecular structure of genes and chromosomes; Mutations and mutagenesis; Regulation of gene expression; Nucleic acid – replication,transcription, splicing, translation and their regulatory mechanisms; Non-coding and micro RNA; RNA interference; DNA damage and repair.
Section 4: Fundamentals of Biological Engineering
  • Engineering principles applied to biological systems: Material and energy balances for reactive and non-reactive systems; Recycle, bypass and purge processes; Stoichiometry of growth and product formation; Degree of reduction, electron balance, theoretical oxygen demand.
  • Classical thermodynamics and Bioenergetics: Laws of thermodynamics; Solution thermodynamics; Phase equilibria, reaction equilibria; Ligand binding; Membrane potential; Energetics of metabolic pathways, oxidation and reduction reactions.
  • Transport Processes: Newtonian and non-Newtonian fluids, fluid flow – laminar and turbulent; Mixing in bioreactors, mixing time; Molecular diffusion and film theory; Oxygen transfer and uptake in bioreactor, kLa and its measurement; Conductive and convective heat transfer, LMTD, overall heat transfer coefficient; Heat exchangers.
Section 5: Bioprocess Engineering and Process Biotechnology
  • Bioreaction engineering: Rate law, zero and first order kinetics; Ideal reactors – batch, mixed flow and plug flow; Enzyme immobilization, diffusion effects – Thiele modulus, effectiveness factor, Damkoehler number; Kinetics of cell growth, substrate utilization and product formation; Structured and unstructured models; Batch, fed-batch and continuous processes; Microbial and enzyme reactors; Optimization and scale up.
  • Upstream and Downstream Processing: Media formulation and optimization; Sterilization of air and media; Filtration – membrane filtration, ultrafiltration; Centrifugation – high speed and ultra; Cell disruption; Principles of chromatography – ion exchange, gel filtration, hydrophobic interaction, affinity, GC, HPLC and FPLC; Extraction, adsorption and drying.
  • Instrumentation and Process Control: Pressure, temperature and flow measurement devices; Valves; First order and second order systems; Feedback and feed forward control; Types of controllers – proportional, derivative and integral control, tuning of controllers.
Section 6: Plant, Animal and Microbial Biotechnology
  • Plants: Totipotency; Regeneration of plants; Plant growth regulators and elicitors; Tissue culture and cell suspension culture system – methodology, kinetics of growth and nutrient optimization; Production of secondary metabolites; Hairy root culture; Plant products of industrial importance; Artificial seeds; Somaclonal variation; Protoplast, protoplast fusion – somatic hybrid and cybrid; Transgenic plants – direct and indirect methods of gene transfer techniques; Selection marker and reporter gene; Plastid transformation.
  • Animals: Culture media composition and growth conditions; Animal cell and tissue preservation; Anchorage and non-anchorage dependent cell culture; Kinetics of cell growth; Micro & macro-carrier culture; Hybridoma technology; Stem cell technology; Animal cloning; Transgenic animals; Knock-out and knock-in animals.
  • Microbes: Production of biomass and primary/secondary metabolites – Biofuels, bioplastic, industrial enzymes, antibiotics; Large scale production and purification of recombinant proteins and metabolites; Clinical-, food- and industrial- microbiology; Screening strategies for new products.
Section 7: Recombinant DNA technology and Other Tools in Biotechnology
  • Recombinant DNA technology: Restriction and modification enzymes; Vectors – plasmids, bacteriophage and other viral vectors, cosmids, Ti plasmid, bacterial and yeast artificial chromosomes; Expression vectors; cDNA and genomic DNA library; Gene isolation and cloning, strategies for production of recombinant proteins; Transposons and gene targeting;
  • Molecular tools: Polymerase chain reaction; DNA/RNA labelling and sequencing; Southern and northern blotting; In-situ hybridization; DNA fingerprinting, RAPD, RFLP; Site-directed mutagenesis; Gene transfer technologies; CRISPR-Cas; Biosensing and biosensors.
  • Analytical tools: Principles of microscopy – light, electron, fluorescent and confocal; Principles of spectroscopy – UV, visible, CD, IR, fluorescence, FT-IR, MS, NMR; Electrophoresis; Micro-arrays; Enzymatic assays; Immunoassays – ELISA, RIA, immunohistochemistry; immunoblotting; Flow cytometry; Whole genome and ChIP sequencing.
  • Computational tools: Bioinformatics resources and search tools; Sequence and structure databases; Sequence analysis – sequence file formats, scoring matrices, alignment, phylogeny; Genomics, proteomics, metabolomics; Gene prediction; Functional annotation; Secondary structure and 3D structure prediction; Knowledge discovery in Biochemical databases; Metagenomics; Metabolic engineering and systems Biology.

In the meantime, apart from the syllabus, the candidate also needs to follow the GATE Exams BT marking scheme thoroughly to perform well.

GATE Biotechnology Engineering Exam Pattern 2022

Any candidate who aspires to ace the GATE exams will find this GATE BT Exam Pattern 2022 to be very resourceful. Along with the GATE Exam Syllabus for Biotechnology Engineering, the GATE Exam Pattern will help the candidates to plan their studies more effectively.

General Aptitude(GA) Marks of Biotechnology Engineering(BT) = 15 Marks

Subject Marks = 85 Marks

Total Marks for BT = 100 Marks

Total Time(in Minutes) = 180 Minutes

Frequently Asked Questions on GATE Biotechnology Engineering Syllabus 2022

How many sections do the GATE BT Syllabus consist of?

The GATE Syllabus 2022 for Biotechnology Engineering is divided into seven main sections. These sections are Engineering Mathematics, General Biology, Genetics, Cellular and Molecular Biology, Fundamentals of Biological Engineering, Bioprocess Engineering and Process Biotechnology, Plant, Animal and Microbial Biotechnology and Recombinant DNA technology and Other Tools in Biotechnology.

What is the marking scheme for the GATE BT Paper, as per the syllabus?

The GATE BT Paper constitutes the General Aptitude Section accounting for 15 marks and the main subject section amounting to 85 marks.

What are the topics covered in the Section 3 Genetics, Cellular and Molecular Biology of the GATE BT Syllabus 2022?

Given below is the list of topics and sub-topics covered under section 3 of the syllabus:

  • Genetics and Evolutionary Biology: Mendelian inheritance; Gene interaction; Complementation; Linkage, recombination and chromosome mapping; Extra chromosomal inheritance; Microbial genetics – transformation, transduction and conjugation; Horizontal gene transfer and transposable elements; Chromosomal variation; Genetic disorders; Population genetics; Epigenetics; Selection and inheritance; Adaptive and neutral evolution; Genetic drift; Species and speciation.
  • Cell Biology: Prokaryotic and eukaryotic cell structure; Cell cycle and cell growth control; Cell-cell communication; Cell signalling and signal transduction; Post-translational modifications; Protein trafficking; Cell death and autophagy; Extra-cellular matrix.
  • Molecular Biology: Molecular structure of genes and chromosomes; Mutations and mutagenesis; Regulation of gene expression; Nucleic acid – replication,transcription, splicing, translation and their regulatory mechanisms; Non-coding and micro RNA; RNA interference; DNA damage and repair.

Leave a Comment

Your Mobile number and Email id will not be published. Required fields are marked *

*

*