Frank Solutions for Class 9 Maths Chapter 10 Logarithms help students to understand the concepts covered in this chapter easily. The solutions are created by subject experts at BYJU’S with the aim of clearing students’ doubts instantly, at their convenience. Students who refer to these solutions during exam preparation will improve their problem-solving skills.
Chapter 10 mainly deals with the study of Logarithms. Students can cross-check their answers by referring to these solutions while solving exercise problems. Regular practice of these solutions will build confidence in students who find difficulty in solving textbook problems. In order to prepare well for the annual exams, students can download Frank Solutions for Class 9 Maths Chapter 10 Logarithms PDF from the link given below and practise regularly.
Frank Solutions for Class 9 Maths Chapter 10 Logarithms Download Free PDF
Access Frank Solutions for Class 9 Maths Chapter 10 Logarithms
1. Express each of the following in the logarithmic form:
(i) 33 = 27
(ii) 54 = 625
(iii) 90 = 1
(iv) (1 / 8) = 2-3
(v) 112 = 121
(vi) 3-2 = (1 / 9)
(vii) 10-4 = 0.0001
(viii) 70 = 1
(ix) (1 / 3)4 = (1 / 81)
(x) 9– 4 = (1 / 6561)
Solution:
The logarithmic forms of the given expressions are as follows:
(i) 33 = 27
log3 27 = 3
(ii) 54 = 625
log5 625 = 4
(iii) 90 = 1
log9 1 = 0
(iv) (1 / 8) = 2– 3
log2 (1 / 8) = – 3
(v) 112 = 121
log11 121 = 2
(vi) 3-2 = (1 / 9)
log3 (1 / 9) = – 2
(vii) 10-4 = 0.0001
log10 0.0001 = – 4
(viii) 70 = 1
log7 1 = 0
(ix) (1 / 3)4 = (1 / 81)
log1 / 3 (1 / 81) = 4
(x) 9-4 = (1 / 6561)
log9 (1 / 6561) = – 4
2. Express each of the following in the exponential form:
(i) log2 128 = 7
(ii) log3 81 = 4
(iii) log10 0.001 = – 3
(iv) log2 (1 / 32) = – 5
(v) logb a = c
(vi) log2 (1 / 2) = – 1
(vii) log5 a = 3
(viii)
(ix)
(x)
(xi)
(xii) – 2 = log2 (0.25)
Solution:
(i) log2 128 = 7
128 = 27
Hence, the exponential form of log2 128 = 7 is 27
(ii) log3 81 = 4
81 = 34
Hence, the exponential form of log3 81 = 4 is 34
(iii) log10 0.001 = – 3
0.001 = 10-3
Hence, the exponential form of log10 0.001 = – 3 is 10-3
(iv) log2 (1 / 32) = – 5
(1 / 32) = 2– 5
Hence, the exponential form of log2 (1 / 32) = – 5 is 2-5
(v) logb a = c
a = bc
Hence, the exponential form of logb a = c is bc
(vi) log2 (1 / 2) = – 1
(1 / 2) = 2– 1
Hence, the exponential form of log2 (1 / 2) = – 1 is 2-1
(vii) log5 a = 3
a = 53
Hence, the exponential form of log5 a = 3 is 53
(viii)
27 =
Hence, the exponential form of
is
(ix)
Hence, the exponential form of
is 251 / 4
(x)
p = aq
Hence, the exponential form of
is aq
(xi)
Hence, the exponential form of
is
(xii) -2 =
We get,
2-2 = 0.25
3. Find x in each of the following when:
(i) logx 49 = 2
(ii) logx 125 = 3
(iii) logx 243 = 5
(iv) log8 x = (2 / 3)
(v) log7 x = 3
(vi) log4 x = – 4
(vii) log2 0.5 = x
(viii) log3 243 = x
(ix) log10 0.0001 = x
(x) log4 0.0625 = x
Solution:
(i) logx 49 = 2
x2 = 49
x = 7
Therefore, the value of x is 7
(ii) logx 125 = 3
x3 = 125
x3 = 53
x = 5
Therefore, the value of x is 5
(iii) logx 243 = 5
x5 = 243
x5 = 35
x = 3
Therefore, the value of x is 3
(iv) log8 x = (2 / 3)
x = 82 / 3
Taking the cube on both sides, we get,
x3 = 82
x3 = 64
x3 = 43
x = 4
Therefore, the value of x is 4
(v) log7 x = 3
x = 73
x = 343
Therefore, the value of x is 343
(vi) log4 x = – 4
x = 4– 4
x = (1 / 256)
Therefore, the value of x is (1 / 256)
(vii) log2 0.5 = x
2x = 0.5
2x = (1 / 2)
2x = 2-1
x = – 1
Therefore, the value of x is -1
(viii) log3 243 = x
243 = 3x
35 = 3x
x = 5
Therefore, the value of x is 5
(ix) log10 0.0001 = x
0.0001 = 10x
10x = 10– 4
x = – 4
Therefore, the value of x is -4
(x) log4 0.0625 = x
0.0625 = 4x
4x = 4– 2
x = – 2
Therefore, the value of x is -2
4. Find the values of:
(i) log10 1000
(ii) log3 81
(iii) log5 3125
(iv) log2 128
(v) log1 / 5 125
(vi) log10 0.0001
(vii) log5 125
(viii) log8 2
(ix) log1 / 2 16
(x) log0.01 10
(xi) log3 81
(xii) log5 (1 / 25)
(xiii) log2 8
(xiv) loga a3
(xv) log0.1 10
(xvi)
Solution:
(i) log10 1000
Let log10 1000 = x
10x = 1000
10x = 103
We get,
x = 3
Hence, the value of x is 3
(ii) log3 81
Let log3 81 = x
3x = 81
3x = 34
We get,
x = 4
Hence, the value of x is 4
(iii) log5 3125
Let log5 3125 = x
5x = 3125
5x = 55
We get,
x = 5
Hence, the value of x is 5
(iv) log2 128
Let log2 128 = x
2x = 128
2x = 27
We get,
x = 7
Hence, the value of x is 7
(v) log1 / 5 125
Let log1 / 5 125 = x
(1 / 5)x = 125
5– x = 53
– x = 3
We get,
x = – 3
Hence, the value of x is -3
(vi) log10 0.0001
Let log10 0.0001 = x
0.0001 = 10x
10x = 10– 4
We get,
x = – 4
Hence, the value of x is -4
(vii) log5 125
Let log5 125 = x
125 = 5x
5x = 53
We get,
x = 3
Hence, the value of x is 3
(viii) log8 2
Let log8 2 = x
2 = 8x
This can be written as,
(23)x = 2
23x = 21
3x = 1
We get,
x = (1 / 3)
Hence, the value of x is (1 / 3)
(ix) log1 / 2 16
Let log1 / 2 16 = x
16 = (1 / 2)x
2– x = 24
– x = 4
We get,
x = -4
Hence, the value of x is -4
(x) log0.01 10
Let log0.01 10 = x
(0.01)x = 10
(10-2)x = 101
10-2x = 101
-2x = 1
We get,
x = (- 1 / 2)
Hence, the value of x is (-1 / 2)
(xi) log3 81
Let log3 81 = x
3x = 81
3x = 34
We get,
x = 4
Hence, the value of x is 4
(xii) log5 (1 / 25)
Let log5 (1 / 25) = x
5x = (1 / 25)
5x = 5-2
We get,
x = -2
Hence, the value of x is -2
(xiii) log2 8
Let log2 8 = x
2x = 8
2x = 23
We get,
x = 3
Hence, the value of x is 3
(xiv) loga a3
Let loga a3 = x
ax = a3
We get,
x = 3
Hence, the value of x is 3
(xv) log0.1 10
Let log0.1 10 = x
(0.1)x = 10
(10-1)x = 101
-x = 1
We get,
x = -1
Hence, the value of x is -1
(xvi)
Let
= x
= 3√3
3x / 2 = 31 + 1 / 2
3x / 2 = 33 / 2
(x / 2) = (3 / 2)
We get,
x = 3
Hence, the value of x is 3
5. If log10 x = a, express the following in terms of x:
(i) 102a
(ii) 10a + 3
(iii) 10– a
(iv) 102a – 3
Solution:
(i) 102a
log10 x = a
x = 10a
Hence,
102a = (10a)2
102a = x2
(ii) 10a + 3
log10 x = a
x = 10a
Hence,
10a + 3 = 10a. 103
10a + 3 = x.1000
10a + 3 = 1000x
(iii) 10-a
log10 x = a
x = 10a
Hence,
10-a = x-1
10-a = (1 / x)
(iv) 102a – 3
log10 x = a
x = 10a
Hence,
102a – 3 = 102a.10-3
102a – 3 = (10a)2 10– 3
102a – 3 = (x2 / 1000)
6. If log10 m = n, express the following in terms of m:
(i) 10n – 1
(ii) 102n – 1
(iii) 10– 3n
Solution:
(i) 10n – 1
log10 m = n
m = 10n
Therefore,
10n – 1 = 10n.10– 1
10n – 1 = (m / 10) [m = 10n]
(ii) 102n + 1
log10 m = n
m = 10n
Therefore,
102n + 1 = 102n. 101
102n + 1 = (10n)2 . 10
102n + 1 = (m)2 . 10 [m = 10n]
102n + 1 = 10m2
(iii) 10-3n
log10 m = n
m = 10n
Therefore,
10-3n = (10n)– 3
10-3n = (m)-3 [m = 10n]
10-3n = (1 / m3)
7. If log10 x = p, express the following in terms of x:
(i) 10p
(ii) 10p + 1
(iii) 102p – 3
(iv) 102 – p
Solution:
(i) 10p
log10 x = p
We get,
x = 10p
(ii) 10p + 1
log10 x = p
x = 10p
Therefore,
10p + 1 = 10p.101
10p + 1 = (x). 10 [x = 10p]
We get,
10p + 1 = 10x
(iii) 102p – 3
log10 x = p
x = 10p
Therefore,
102p – 3 = 102p. 10-3
102p – 3 = (10p)2. 10-3
102p – 3 = (x)2.10-3 [x = 10p]
102p – 3 = (x2 / 1000)
(iv) 102 – p
log10 x = p
x = 10p
Therefore,
102 – p = 102.10-p
102 – p = 100.x-1
102 – p = (100 / x)
8. If log10 x = a, log10 y = b and log10 z = 2a – 3b, express z in terms of x and y.
Solution:
log10 x = a
x = 10a
log10 y = b
y = 10b
log10 z = 2a – 3b
z = 102a – 3b
Therefore,
z = 102a – 3b
z = (10a)2.(10b)-3
z = (x)2.(y)-3
z = (x2 / y3)
9. Express the following in terms of log 2 and log 3:
(i) log 36
(ii) log 54
(iii) log 144
(iv) log 216
(v) log 648
(vi) log 128
Solution:
(i) log 36
log 36 = log (2 × 2 × 3 × 3)
log 36 = log (22 × 32)
log 36 = log 22 + log 32
We get,
log 36 = 2 log 2 + 2 log 3
(ii) log 54
log 54 = log (2 × 3 × 3 × 3)
log 54 = log (2 × 33)
log 54 = log 2 + log 33
We get,
log 54 = log 2 + 3 log 3
(iii) log 144
log 144 = log (24 × 32)
log 144 = log 24 + log 32
We get,
log 144 = 4 log 2 + 2 log 3
(iv) log 216
log 216 = log (23 × 33)
log 216 = log 23 + log 33
We get,
log 216 = 3 log 2 + 3 log 3
(v) log 648
log 648 = log (23 × 34)
log 648 = log 23 + log 34
We get,
log 648 = 3 log 2 + 4 log 3
(vi) log 128
log 128 = log (3 × 22)8
log 128 = 8 log (3 × 22)
log 128 = 8 {log 3 + log 22}
We get,
log 128 = 8 {log 3 + 2 log 2}
10. Express the following in terms of log 5 and/or log 2:
(i) log 20
(ii) log 80
(iii) log 125
(iv) log 160
(v) log 500
(vi) log 250
Solution:
(i) log 20
log 20 = log (22 × 5)
log 20 = log 22 + log 5
We get,
log 20 = 2 log 2 + log 5
(ii) log 80
log 80 = log (24 × 5)
log 80 = log 24 + log 5
We get,
log 80 = 4 log 2 + log 5
(iii) log 125
log 125 = log 53
We get,
log 125 = 3 log 5
(iv) log 160
log 160 = log (25 × 5)
log 160 = log 25 + log 5
We get,
log 160 = 5 log 2 + log 5
(v) log 500
log 500 = log (22 × 53)
log 500 = log 22 + log 53
We get,
log 500 = 2 log 2 + 3 log 5
(vi) log 250 = log (53 × 2)
log 250 = log 53 + log 2
We get,
log 250 = 3 log 5 + log 2
11. Express the following in terms of log 2 and log 3:
(i)
(ii)
(iii)
(iv) log (26 / 51) – log (91 / 119)
(v) log (225 / 16) – 2 log (5 / 9) + log (2 / 3)5
Solution:
(i)
= log (144)1 / 3
= (1 / 3) log 144
= (1 / 3) log (24 × 32)
= (1 / 3) log 24 + (1 / 3) log 32
We get,
= (4 / 3) log 2 + (2 / 3) log 3
(ii)
= log (216)1 / 5
= (1 / 5) log 216
= (1 / 5) log (23 × 33)
= (1 / 5) log 23 + (1 / 5) log 33
We get,
= (3 / 5) log 2 + (3 / 5) log 3
(iii)
= log (648)1 / 4
= (1 / 4) log 648
= (1 / 4) log (23 × 34)
= (1 / 4) log 23 + (1 / 4) log 34
= (3 / 4) log 2 + (4 / 4) log 3
We get,
= (3 / 4) log 2 + 1 log 3
= (3 / 4) log 2 + log 3
(iv) log (26 / 51) – log (91 / 119)
= log {(2 × 13) / (3 × 17)} – log {(7 x 13) / (7 x 17)}
= log {(2 × 13) / (3 × 17)} – log (13 / 17)
= (log 13 + log 2 – log 3 – log 17) – (log 13 – log 17)
= log 13 + log 2 – log 3 – log 17 – log 13 + log 17
We get,
= log 2 – log 3
(v) log (225 / 16) – 2 log (5 / 9) + log (2 / 3)5
= log (225 / 16) – 2 log (5 / 9) + 5 log (2 / 3)
= log 225 – log 16 – 2 {log 5 – log 9} + 5 {log 2 – log 3}
= log (52 × 32) – log 24 – 2 {log 5 – log 32} + 5 {log 2 – log 3}
= log 52 + log 32 – 4 log 2 – 2 {log 5 – 2 log 3} + 5 {log 2 – log 3}
= 2 log 5 + 2 log 3 – 4 log 2 – 2 log 5 + 4 log 3 + 5 log 2 – 5 log 3
We get,
= log 2 + log 3
12. Write the logarithmic equation for:
(i) F = {G (m1m2) / d2}
(ii) E = (1 / 2) mv2
(iii)
(iv) V = (4 / 3) πr3
(v)
Solution:
(i) F = {G (m1m2) / d2}
Taking log on both sides, we get,
log F = log [{G (m1m2)} / d2]
log F = log (Gm1m2) – log d2
We get,
log F = log G + log m1 + log m2 – 2 log d
(ii) E = (1 / 2) mv2
Taking log on both sides, we get,
log E = log {(1 / 2) mv2}
log E = log (1 / 2) + log m + log v2
We get,
log E = log 1 – log 2 + log m + 2 log v
(iii)
n = (M.g / m.l)1 / 2
On taking log on both sides, we get,
log n = log (M.g / m.l)1 / 2
log n = (1 / 2) log (M.g / m. l)
log n = (1 / 2) {log (M.g) – log (m.l)}
We get,
log n = (1 / 2) {log M + log g – log m – log l}
(iv) V = (4 / 3) πr3
On taking log on both sides, we get,
log V = log {(4 / 3)Ï€r3}
log V = log 4 + log π + log r3 – log 3
log V = log 22 + log π + 3 log r – log 3
log V = 2 log 2 – log 3 + log π + 3 log r
(v)
V = 1 / Dl (T / πr)1 / 2
On taking log on both sides, we get,
log V = log {1 / Dl (T / πr)1 / 2}
log V = log (1 / Dl) + log (T / πr)1 / 2
log V = (log 1 – log D – log l) + (1 / 2) log (T / πr)
log V = (0 – log D – log l) + (1 / 2) {(log T – log π – log r)}
We get,
log V = (1 / 2) (log T – log π – log r) – log D – log l
13. Express the following as a single logarithm:
(i) log 18 + log 25 – log 30
(ii) log 144 – log 72 + log 150 – log 50
(iii) 2 log 3 – (1 / 2) log 16 + log 12
(iv) 2 + (1 / 2) log 9 – 2 log 5
(v) 2 log (9 / 5) – 3 log (3 / 5) + log (16 / 20)
(vi) 2 log (15 / 18) – log (25 / 162) + log (4 / 9)
(vii) 2 log (16 / 25) – 3 log (8 / 5) + log 90
(viii) (1 / 2) log 25 – 2 log 3 + log 36
(ix) log (81 / 8) – 2 log (3 / 5) + 3 log (2 / 5) + log (25 / 9)
(x) 3 log (5 / 8) + 2 log (8 / 15) – (1 / 2) log (25 / 81) + 3
Solution:
(i) log 18 + log 25 – log 30
This can be written as,
= log (2 × 32) + log 52 – log (2 × 3 × 5)
= log 2 + log 32 + 2 log 5 – {log 2 + log 3 + log 5}
= log 2 + 2 log 3 + 2 log 5 – log 2 – log 3 – log 5
= log 3+ log 5
= log (3 × 5)
We get,
= log 15
(ii) log 144 – log 72 + log 150 – log 50
This can be written as,
= log (24 × 32) – log (23 × 32) + log (2 × 3 × 52) – log (2 × 52)
= log 24 + log 32 – {log 23 + log 32) + log 2 + log 3 + log 52 – {log 2 + log 52}
= 4 log 2 + 2 log 3 – 3 log 2 – 2 log 3 + log 2 + log 3 + 2 log 5 – log 2 – 2 log 5
We get,
= log 2 + log 3
= log (2 × 3)
We get,
= log 6
(iii) 2 log 3 – (1 / 2) log 16 + log 12
= 2 log 3 – (1 / 2) log 24 + log (22 × 3)
= 2 log 3 – (1 / 2) × 4 log 2 + log 22 + log 3
We get,
= 2 log 3 – 2 log 2 + 2 log 2 + log 3
= 3 log 3
= log 33
We get,
= log 27
(iv) 2 + (1 / 2) log 9 – 2 log 5
This can be written as,
= 2 + (1 / 2) log 32 – 2 log 5
= 2 log 10 + (1 / 2) × 2 log 3 – 2 log 5
= log 102 + log 3 – log 52
= log 100 + log 3 – log 25
= log {(100 × 3) / 25}
We get,
= log 12
(v) 2 log (9 / 5) – 3 log (3 / 5) + log (16 / 20)
= 2 log 9 – 2 log 5 – 3 log 3 + 3 log 5 + log 16 – log 20
This can be written as,
= 2 log (32) – 2 log 5 – 3 log 3 + 3 log 5 + log (42) – log (5 × 4)
= 4 log 3 – 2 log 5 – 3 log 3 + 3 log 5 + 2 log 4 – log 5 – log 4
= (4 – 3) log 3 + (-2 -1 + 3) log 5 + log 4
= log 3 + log 4
= log (3 × 4)
We get,
= log 12
(vi) 2 log (15 / 18) – log (25 / 162) + log (4 / 9)
= 2 log {5 / (2 × 3)} – log {52 / (2 × 34)} + log (22 / 32)
= 2 log 5 – 2 log 2 – 2 log 3 – {log 52 – log 2 – log 34} + log 22 – log 32
= 2 log 5 – 2 log 2 – 2 log 3 – 2 log 5 + log 2 + 4 log 3 + 2 log 2 – 2 log 3
We get,
= log 2
(vii) 2 log (16 / 25) – 3 log (8 / 5) + log 90
This can be written as,
= 2 log (24 / 52) – 3 log (23 / 5) + log (2 × 5 × 32)
= 2 log 24 – 2 log 52 – 3 {log 23 – log 5) + log 2 + log 5 + log 32
= 4 × 2 log 2 – 2 × 2 log 5 – 3 × 3 log 2 + 3 log 5 + log 2 + log 5 + 2 log 3
= 8 log 2 – 4 log 5 – 9 log 2 + 3 log 5 + log 2 + log 5 + 2 log 3
= 2 log 3
= log 32
We get,
= log 9
(viii) (1 / 2) log 25 – 2 log 3 + log 36
= (1 / 2) log 52 – 2 log 3 + log (22 × 32)
= (1 / 2) × 2 log 5 – 2 log 3 + log 22 + log 32
= log 5 – log 32 + 2 log 2 + log 32
= log 5 + 2 log 2
= log 5 + log 22
= log 5 + log 4
= log (5 × 4)
We get,
= log 20
(ix) log (81 / 8) – 2 log (3 / 5) + 3 log (2 / 5) + log (25 / 9)
= log (34 / 23) – 2 log (3 / 5) + 3 log (2 / 5) + log (52 / 32)
= log 34 – log 23 – 2 log 3 + 2 log 5 + 3 log 2 – 3 log 5 + log 52 – log 32
= 4 log 3 – 3 log 2 – 2 log 3 + 2 log 5 + 3 log 2 – 3 log 5 + 2 log 5 – 2 log 3
We get,
= log 5
(x) 3 log (5 / 8) + 2 log (8 / 15) – (1 / 2) log (25 / 81) + 3
This can be written as,
= 3 log (5 / 23) + 2 log {23 / (3 × 5)} – (1 / 2) log (52 / 34) + 3 log 10
= 3 log 5 – 3 log 23 + 2 log 23 – 2 log 3 – 2 log 5 – (1 / 2) log 52 + (1 / 2) log 34 + 3 log (2 × 5)
= 3 log 5 – 3 × 3 log 2 + 2 × 3 log 2 – 2 log 3 – 2 log 5 – (1 / 2) × 2 log 5 + (1 / 2) × 4 log 3 + 3 log 2 + 3 log 5
= 3 log 5 – 9 log 2 + 6 log 2 – 2 log 3 – 2 log 5 – log 5 + 2 log 3 + 3 log 2 + 3 log 5
= 3 log 5
= log 53
We get,
= log 125
14. Simplify the following:
(i) 2 log 5 + log 8 – (1 / 2) log 4
(ii) 2 log 7 + 3 log 5 – log (49 / 8)
(iii) 3 log (32/27) + 5 log (125/ 24) – 3 log (625/ 243) + log (2 / 75)
(iv) 12 log (3/2) + 7 log (125 / 27) – 5 log (25 / 36) – 7 log 25 + log (16 / 3)
Solution:
(i) 2 log 5 + log 8 – (1 / 2) log 4
= 2 log 5 + log 23 – (1 / 2) log 22
= 2 log 5 + 3 log 2 – (1 / 2) × 2 log 2
= 2 log 5 + 3 log 2 – log 2
= 2 log 5 + 2 log 2
= 2 (log 5 + log 2)
= 2 log (5 × 2)
We get,
= 2 log 10
= 2 × 1
= 2
(ii) 2 log 7 + 3 log 5 – log (49 / 8)
= 2 log 7 + 3 log 5 – log 49 + log 8
= 2 log 7 + 3 log 5 – log 72 + log 23
= 2 log 7 + 3 log 5 – 2 log 7 + 3 log 2
= 3 log 5 + 3 log 2
= 3 (log 5 + log 2)
= 3 log (5 × 2)
= 3 log 10
We get,
= 3 × 1
= 3
(iii) 3 log (32/27) + 5 log (125/ 24) – 3 log (625/ 243) + log (2 / 75)
= 3 log (25 / 33) + 5 log {53 / (23 x 3)} – 3 log (54 / 35) + log {2 / (3 x 52)}
= 3 log 25 – 3 log 33 + 5 log 53 – 5 log 23 – 5 log 3 – 3 log 54 + 3 log 35 + log 2 – log 3 -log 52
= 15 log 2 – 9 log 3 + 15 log 5 – 15 log 2 – 5 log 3 – 12 log 5 + 15 log 3 + log 2 – log 3 – 2 log 5
= log 2 + log 5
(iv) 12 log (3/2) + 7 log (125 / 27) – 5 log (25 / 36) – 7 log 25 + log (16 / 3)
= 12 log (3/2) + 7 log (53 / 33) – 5 log {52 / (22 x 32)} – 7 log 52 + log (24 / 3)
= 12 log 3 – 12 log 2 + 7 log 53 – 7 log 33 – 5 log 52 + 5 log 22 + 5 log 32 – 7 log 52 + log 24 – log 3
= 12 log 3 – 12 log 2 + 21 log 5 – 21 log 3 – 10 log 5 + 10 log 2 + 10 log 3 – 14 log 5 + 4 log 2 – log 3
We get,
= 2log 2 – 3 log 5
15. Solve the following:
(i) log (3 – x) – log (x – 3) = 1
(ii) log (x2 + 36) – 2 log x = 1
(iii) log 7 + log (3x – 2) = log (x + 3) + 1
(iv) log (x + 1) + log (x – 1) = log 11 + 2 log 3
(v) log4 x + log4 (x – 6) = 2
(vi) log8 (x2 – 1) – log8 (3x + 9) = 0
(vii) log (x + 1) + log (x – 1) = log 48
(viii) log2 x + log4 x + log16 x = (21 / 4)
Solution:
(i) log (3 – x) – log (x – 3) = 1
This can be written as,
log {(3 – x) / (x – 3)} = 1
log {(3 – x) / (x – 3)} = log 10
(3 – x) / (x – 3) = 10
On calculating further, we get,
(3 – x) = 10 (x – 3)
(3 – x) = 10 x – 30
11x = 33
We get,
x = 3
(ii) log (x2 + 36) – 2 log x = 1
This can be written as,
log (x2 + 36) – log x2 = 1
log {(x2 + 36) / x2} = 1
log {(x2 + 36) / x2} = log 10
{(x2 + 36) / x2} = 10
On further calculation, we get,
x2 + 36 = 10x2
9x2 = 36
x2 = 4
We get,
x = 2
(iii) log 7 + log (3x – 2) = log (x + 3) + 1
log 7 + log (3x – 2) – log (x + 3) = 1
This can be written as,
log {7.(3x – 2) / (x + 3)} = log 10
{7. (3x – 2) / (x + 3)} = 10
On further calculation, we get,
21x – 14 = 10 (x + 3)
21x – 10x = 30 + 14
11x = 44
x = (44 / 11)
We get,
x = 4
(iv) log (x + 1) + log (x – 1) = log 11 + 2 log 3
This can be written as,
log {(x + 1) (x – 1)} = log 11 + log 32
log (x2 – 1) = log (11. 9)
log (x2 – 1) = log 99
x2 – 1 = 99
x2 = 99 + 1
x2 = 100
Hence,
x = 10 or -10
Here, the negative value is rejected
Therefore,
x = 10
(v) log4 x + log4 (x – 6) = 2
log4 {x (x – 6)} = 2 log4 4
log4 {x2 – 6x} = log4 42
x2 – 6x = 16
x2 – 6x – 16 = 0
x2 – 8x + 2x – 16 = 0
x (x – 8) + 2 (x – 8) = 0
(x – 8) (x + 2) = 0
We get,
x = 8 or -2
The negative value is rejected
Hence,
x = 8
(vi) log8 (x2 – 1) – log8 (3x + 9) = 0
log8 {(x2 – 1) / (3x + 9)} = log8 1
(x2 – 1) / (3x + 9) = 1
x2 – 1 = 3x + 9
On calculating further, we get,
x2 – 3x – 10 = 0
x2 – 5x + 2x – 10 = 0
x (x – 5) + 2 (x – 5) = 0
(x – 5) (x + 2) = 0
x = 5 or x = -2
The negative value is rejected,
Hence,
x = 5
(vii) log (x + 1) + log (x – 1) = log 48
This can be written as,
log {(x + 1) (x – 1)} = log 48
log (x2 – 1) = log 48
x2 – 1 = 48
x2 = 48 + 1
x2 = 49
x = 7 or -7
neglecting the negative value
Therefore,
x = 7
(viii) log2 x + log4 x + log16 x = (21 / 4)
(1 / logx 2) + (1 / logx 22) + (1 / logx 24) = (21 / 4)
(1 / logx 2) + (1 / 2 logx 2) + (1 / 4 logx 2) = (21 / 4)
Taking (1 / logx 2) as common, we get,
(1 / logx 2) {1 + (1 / 2) + (1 / 4)} = (21 / 4)
We get,
(1 / logx 2) (7 / 4) = (21 / 4)
logx 2= (7 / 4) × (4 / 21)
logx 2 = (1 / 3)
So,
x1 / 3 = 2
We get,
x = 23
x = 8
Comments