Frank Solutions for Class 9 Maths Chapter 27 Trigonometrical Ratios of Standard Angles are provided here. This chapter plays a vital role in the Class 9 syllabus, as it is continued in higher classes as well. Students who aim to secure better academic scores are advised to practise Frank Solutions on a regular basis.
Chapter 27 provides basic information about the Trigonometrical Ratios of Standard Angles. The solutions are formulated with the intention of helping students boost their exam preparation. It also builds the confidence of students to solve more complex problems within a short duration. Students can easily access Frank Solutions for Class 9 Maths Chapter 27 Trigonometrical Ratios of Standard Angles PDF from the link given below.
Frank Solutions for Class 9 Maths Chapter 27 Trigonometrical Ratios of Standard Angles Download PDF
Access Frank Solutions for Class 9 Maths Chapter 27 Trigonometrical Ratios of Standard Angles
1. Without using tables, evaluate the following:
(i) sin 600 sin 300 + cos 300 cos 600
(ii) sec 300 cosec 600 + cos 600 sin 300
(iii) sec 450 sin 450 – sin 300 sec 600
(iv) sin2 300 sin2450 + sin2 600 sin2 900
(v) tan2 300 + tan2 600 + tan2 450
(vi) sin2 300 cos2 450 + 4 tan2 300 + sin2 900 + cos2 00
(vii) cosec2 450 sec2 300 – sin2 300 – 4 cot2 450 + sec2 600
(viii) cosec3 300 cos 600 tan3 450 sin2 900 sec2 450 cot 300
(ix) (sin 900 + sin 450 + sin 300) (sin 900 – cos 450 + cos 600)
(x) 4(sin4 300 + cos4 600) – 3 (cos2 450 – sin2 900)
Solution:
(i) sin 600 sin 300 + cos 300 cos 600
sin 600 = (√3 / 2)
sin 300 = (1 / 2)
cos 300 = (√3 / 2)
cos 600 = (1 / 2)
On substituting, we get,
sin 600 sin 300 + cos 300 cos 600 = (√3 / 2) x (1 / 2) + (√3 / 2) x (1/ 2)
= (√3 / 4) + (√3 / 4)
We get,
= (√3 / 2)
(ii) sec 300 cosec 600 + cos 600 sin 300
cos 300 = (√3 / 2) ⇒ sec 300 = (2 / √3)
sin 600 = (√3 / 2) ⇒ cosec 600 = (2 /√3)
cos 600 = (1 / 2)
sin 300 = (1 / 2)
On substituting, we get,
sec 300 cosec 600 + cos 600 sin 300 = (2 / √3) x (2 / √3) + (1 / 2) x (1 / 2)
= (4 / 3) + (1 / 4)
= (16 + 3) / 12
We get,
= 19 / 12
(iii) sec 450 sin 450 – sin 300 sec 600
cos 450 = (1 / √2) ⇒ sec 450 = √2
sin 450 = (1 / √2)
sin 300 = (1 / 2)
cos 600 = (1 / 2) ⇒ sec 600 = 2
sec 450 sin 450 – sin 300 sec 600
On substituting, we get,
= (√2) x (1 / √2) – (1 / 2) x 2
= 1 – 1
We get,
= 0
(iv) sin2 300 sin2 450 + sin2 600 sin2 900
sin 300 = (1 / 2)
sin 450 = (1 / √2)
sin 600 = (√3 / 2)
sin 900 = 1
On substituting, we get,
sin2 300 sin2 450 + sin2 600 sin2 900 = (1 / 2)2 (1 / √2)2 + (√3 / 2)2 (1)2
= (1 / 4) x (1 / 2) + (3 / 4) (1)
= (1 / 8) + (3 / 4)
= (1 + 6) / 8
We get,
= 7 / 8
(v) tan2 300 + tan2 600 + tan2 450
tan 300 = (1 / √3)
tan 600 = √3
tan 450 = 1
On substituting, we get,
tan2 300 + tan2 600 + tan2 450 = (1 / √3)2 + (√3)2 + 1
= (1 / 3) + 3 + 1
= (1 + 9 + 3) / 3
We get,
= 13 / 3
(vi) sin2 300 cos2 450 + 4 tan2 300 + sin2 900 + cos2 00
sin 300 = (1 / 2)
cos 450 = (1 / √2)
tan 300 = (1 / √3)
sin 900 = 1
cos 00 = 1
On substituting, we get,
sin2 300 cos2 450 + 4 tan2 300 + sin2 900 + cos2 00
= (1 / 2)2 (1 / √2)2 + 4 (1 / √3)2 + 1 + 1
= (1 / 4) (1 / 2) + (4 / 3) + 2
= (1 / 8) + (4 / 3) + 2
= (3 + 32 + 48) / 24
We get,
= 83 / 24
(vii) cosec2 450 sec2 300 – sin2 300 – 4 cot2 450 + sec2 600
sin 450 = (1 / √2)
cosec 450 = (√2 / 1)
sin 300 = cos 600 = (1 / 2)
sec 600 = 2
cos 300 = (√3 / 2)
sec 300 = (2 / √3)
tan 450 = 1
cot 450 = 1
On substituting, we get,
cosec2 450 sec2 300 – sin2 300 – 4 cot2 450 + sec2 600 = (√2 / 1)2 (2 / √3)2 – (1 / 2)2 – 4 (1)2 + (2)2
= 2 x (4 / 3) – (1 / 4) – 4 + 4
= (8 / 3) – (1 / 4)
= (32 – 3) / 12
We get,
= 29 / 12
(viii) cosec3 300 cos 600 tan3 450 sin2 900 sec2 450 cot 300
sin 300 = (1 / 2)
cosec 300 = 2
cos 600 = (1 / 2)
sec 600 = 2
cos 450 = (1 / √2)
sec 450 = √2
tan 450 = 1
sin 900 = 1
tan 300 = (1 / √3)
cot 300 = √3
On substituting, we get,
cosec3 300 cos 600 tan3 450 sin2 900 sec2 450 cot 300
= (2)3 (1 / 2) (1)3 (1)2 (√2)2 (√3)
= 8 x (1 / 2) x 2 x √ 3
We get,
= 8√3
(ix) (sin 900 + sin 450 + sin 300) (sin 900 – cos 450 + cos 600)
sin 300 = (1 / 2)
sin 450 = (1 / √2)
sin 900 = 1
cos 450 = (1 / √2)
cos 600 = (1 / 2)
(sin 900 + sin 450 + sin 300) (sin 900 – cos 450 + cos 600)
On substituting, we get,
= {(1) + (1/ √2) + (1 / 2)} {(1) – (1 / √2) + (1 / 2)}
= {(3 / 2) + (1 / √2)} {(3 / 2) – (1 / √2)}
= (3 / 2)2 – (1 / √2)2
= (9 / 4) – (1 / 2)
We get,
= (9 – 2) / 4
= 7 / 4
(x) 4 (sin4 300 + cos4 600) – 3 (cos2 450 – sin2 900)
sin 300 = (1 / 2)
sin 900 = 1
cos 450 = (1 / √2)
cos 600 = (1 / 2)
On substituting, we get,
4 (sin4 300 + cos4 600) – 3 (cos2 450 – sin2 900)
= 4 {(1 / 2)4 + (1 / 2)4} – 3 {(1 / √2)2 – (1)2}
= 4 {(1 / 16) + (1 / 16)} – 3 {(1 / 2) – 1}
On calculating further, we get,
= 4 x (2 / 16) + 3 x (1 / 2)
= (1 / 2) + (3 / 2)
= 4 / 2
We get,
= 2
2. Without using tables, find the value of the following:
(i) (sin 300 – sin 900 + 2 cos 00) / tan 300 tan 600
(ii) (sin 300 / sin 450) + (tan 450 / sec 600) – (sin 600 / cot 450) – (cos 300 / sin 900)
(iii) (tan 450 / cosec 300) + (sec 600 / cot 450) – (5 sin 900 / 2 cos 00)
(iv) (tan2 600 + 4 cos2 450 + 3 sec2 300 + 5 cos 900) / (cosec 300 + sec 600 – cot2 300)
(v) (4 / cot2 300) + (1 / sin2 600) – cos2 450
Solution:
(i) (sin 300 – sin 900 + 2 cos 00) / tan 300 tan 600
= {(1 / 2) – (1) + 2 x 1} / (1 / √3) x √3
On further calculation, we get,
= {(1 / 2) – 1 + 2} / 1
= (1 / 2) – 1 + 2
= (1 / 2) + 1
We get,
= 3 / 2
(ii) (sin 300 / sin 450) + (tan 450 / sec 600) – (sin 600 / cot 450) – (cos 300 / sin 900)
= {(1 / 2) / (1 / √2)} + (1 / 2) – {(√3 / 2) / 1} – {(√3 / 2) / 1}
On calculating further, we get,
= (√2 / 2) + (1 / 2) – (√3 / 2) – (√3 / 2)
= (√2 + 1 – 2√3) / 2
(iii) (tan 450 / cosec 300) + (sec 600 / cot 450) – (5 sin 900 / 2 cos 00)
= (1 / 2) + (2 / 1) – (5 x 1) / (2 x 1)
On further calculation, we get,
= (1 / 2) + (2 / 1) – (5 / 2)
= (1 + 4 – 5) / 2
We get,
= 0
(iv) (tan2 600 + 4 cos2 450 + 3 sec2 300 + 5 cos 900) / (cosec 300 + sec 600 – cot2 300)
= {(√3)2 + 4 x (1 / √2)2 + 3 x (2 / √3)2 + 5 x 0} / (2) + (2) – (√3)2
On further calculation, we get,
= {3 + 4 x (1 / 2) + 3 x (4 / 3) + 0} / (2 + 2 – 3)
= (3 + 2 + 4) / (4 – 3)
We get,
= 9
(v) (4 / cot2 300) + (1 / sin2 600) – cos2 450
= {4 / (√3)2} + {1 / (√3 / 2)2} – (1 / √2)2
On further calculation, we get,
= (4 / 3) + {1 / (3 / 4)} – (1 / 2)
= (4 / 3) + (4 / 3) – (1 / 2)
= (8 + 8 – 3) / 6
We get,
= 13 / 6
3. Prove that:
(a) sin 600. cos 300 – sin 600. sin 300 = (1 / 2)
(b) cos 600. Cos 300 – sin 600. sin 300 = 0
(c) sec2 450 – tan2 450 = 1
(d) {(cot 300 + 1) / (cot 300 – 1)}2 = (sec 300 + 1) / (sec 300 – 1)
Solution:
(a) Consider L.H.S.
sin 600. cos 300 – cos 600. sin 300
= (√3 / 2) x (√3 / 2) – (1 / 2) x (1 / 2)
On simplification, we get,
= (3 / 4) – (1 / 4)
= (3 – 1) / 4
= 2 / 4
We get,
= 1 / 2
= R.H. S.
Hence, proved
(b) Consider L.H.S.
cos 600. cos 300 – sin 600. sin 300
= (1 / 2) x (√3 / 2) – (√3 / 2) x (1 / 2)
On calculating further, we get,
= (√3 / 4) – (√3 / 4)
We get,
= 0
= R.H.S.
Hence, proved
(c) Consider L.H.S.
sec2 450 – tan2 450
= (√2)2 – (1)2
= 2 – 1
= 1
= R.H.S.
Hence, proved
(d) Consider L.H.S.
{(cot 300 + 1) / (cot 300 – 1)}2
= {(√3) + 1 / (√3) – 1}2
= {(√3 + 1) / (√3 – 1) x (√3 + 1) / (√3 + 1)}2
On further calculation, we get,
= {(√3)2 + (1)2 + 2√3} / {(√3)2 + (1)2 – 2√3}
= (3 + 1 + 2√3) / (3 + 1 – 2√3)
= (4 + 2√3) / (4 – 2√3)
Taking 2 as common, we get,
= 2 (2 + √3) / 2 (2 – √3)
= (2 + √3) / (2 – √3)
= {(2 / √3) + 1} / {(2 / √3) – 1}
= (sec 300 + 1) / (sec 300 – 1)
= R.H.S.
Hence, proved
4. Find the value of ‘A’, if
(a) 2 cos A = 1
(b) 2 sin 2A = 1
(c) cosec 3A = (2 / √3)
(d) 2 cos 3A = 1
(e) √3 cot A = 1
(f) cot 3A = 1
Solution:
(a) 2 cos A = 1
cos A = (1 / 2)
cos A = cos 600
A = 600
Therefore, the value of ‘A’ is 600
(b) 2 sin 2A = 1
sin 2A = (1 / 2)
sin 2A = sin 300
2A = 300
We get,
A = 150
Therefore, the value of ‘A’ is 150
(c) cosec 3A = (2 / √3)
cosec 3A = cosec 600
3A = 600
We get,
A = 200
Therefore, the value of ‘A’ is 200
(d) 2 cos 3A = 1
cos 3A = (1 / 2)
cos 3A = cos 600
3A = 600
We get,
A = 200
Therefore, the value of ‘A’ is 200
(e) √3 cot A = 1
cot A = (1 / √3)
cot A = cot 600
A = 600
Therefore, the value of ‘A’ is 600
(f) cot 3A = 1
cot 3A = cot 450
3A = 450
We get,
A = 150
Therefore, the value of ‘A’ is 150
5. Find the value of ‘A’, if
(a) (1 – cosec A) (2 – sec A) = 0
(b) (2 – cosec 2A) cos 3A = 0
Solution:
(a) (1 – cosec A) (2 – sec A) = 0
Here,
1 – cosec A = 0 and 2 – sec A = 0
On calculating further, we get,
cosec A = 1 and sec A = 2
cosec A = cosec 900 and sec A = sec 600
A = 900 and A = 600
(b) (2 – cosec 2A) cos 3A = 0
Here,
2 – cosec 2A = 0 and cos 3A = 0
On further calculation, we get,
cosec 2A = 2 and cos 3A = 0
cosec 2A = cosec 300 and cos 3A = cos 900
We get,
2A = 300 and 3A = 900
A = 150 and A = 300
6. Find the value of ‘x’ in each of the following:
(a)
(b)
(c)
(d)
Solution:
(a)
From the figure,
We have,
sin 600 = BC / AC
√3 / 2 = 12 / x
On simplification, we get,
x = (2 x 12) / √3
x = 24 / √3
x = (8 x 3) / √3
We get,
x = 8√3
(b)
From the figure,
We have
tan 450 = BC / AB
1 = 24 / x
We get,
x = 24
(c)
From the figure,
We have,
cos x = AB / AC
cos x = 12 / 24
cos x = 1 / 2
cos x = cos 600
We get,
x = 600
(d)
From the figure,
We have,
sin x = BC / AC
sin x = (15 / √2) / 15
sin x = (1 / √2)
sin x = sin 450
We get,
x = 450
7. Find the length of AD.
Given: ∠ABC = 600, ∠DBC = 450 and BC = 24 cm.
Solution:
In â–³ABC,
tan 600 = AC / BC
√3 = AC / 24
We get,
AC = 24√3 cm
In â–³DBC,
tan 450 = DC / BC
1 = DC / 24
We get,
DC = 24 cm
Now,
AC = AD + DC
AD = AC – DC
Substituting the values of AC and DC, we get,
AD = 24√3 – 24
AD = 24 (√3 – 1) cm
Therefore, the length of AD is 24(√3 – 1) cm
8. Find lengths of diagonals AC and BD. Given AB = 24 cm and ∠BAD = 600
Solution:
Since all sides are equal,
∴ The given figure is a rhombus
We know that,
Diagonals of a rhombus bisect each other at right angles and also bisect the angle of vertex
Let the diagonals AC and BD intersect each other at point O
Hence,
OA = OC = (1 / 2) AC
OB = OD = (1 / 2) BD
∠AOB = 900
Given
∠BAD = 600
⇒ ∠OAB = (1/ 2) ∠BAD
⇒ ∠OAB = 300
In right-angled â–³AOB,
sin 300 = OB / AB
= (1 / 2)
Given AB = 24,
⇒OB / 24 = (1 / 2)
OB = 24 / 2
We get,
OB = 12 cm
cos 300 = OA / AB
= √3 / 2
⇒OA / 24 = √3 / 2
OA = (24√3) / 2
We get,
OA = 12√3 cm
Therefore,
Length of diagonal AC = 2 x OA = 2 x 12√3 = 24√3 cm and
Length of diagonal BD = 2 x OB = 2 x 12 = 24 cm
9. Find the length of EC.
Solution:
CD = 28 cm
⇒ AB = 28 cm
In the right â–³ABE,
tan 300 = BE / AB
1 / √3 = BE / 28
We get,
BE = (28 / √3)
In the right â–³ABC,
tan 600 = CB / AB
√3 = CB / 28
We get,
CB = 28√3
Hence,
Length of EC = CB + BE
= 28√3 + (28 / √3)
On further calculation, we get,
= (84 + 28) / √3
= (112 / √3)
Hence, the length of EC is (112 / √3) cm
10. In the given figure, AB and EC are parallel to each other. Sides AD and BC are 1.5 cm each and are perpendicular to AB. Given that ∠AED = 450 and ∠ACD = 300. Find:
(a) AB
(b) AC
(c) AE
Solution:
(a) In right â–³ADC,
tan 300 = AD / DC
(1 / √3) = 1.5 / DC (given AD = 1.5 cm)
DC = 1.5√3
Here,
AB || DC and AD ⊥ EC, ABCD is a parallelogram
Therefore, opposite sides are equal
⇒ AB = DC = 1.5√3 cm
(b) In the right â–³ADC,
sin 300 = AD / AC
(1 / 2) = 1.5 / AC (given AD = 1.5 cm)
AC = 2 x 1.5
We get,
AC = 3 cm
(c) In the right â–³ADE,
sin 450 = AD / AE
(1 / √2) = 1.5 / AE (given AD = 1.5 cm)
We get,
AE = 1.5√2 cm
11. Evaluate the following:
(a) sin 620 / cos 280
(b) sec 340 / cosec 560
(c) tan 120 / cot 780
(d) sin 250 cos 430 / sin 470 cos 650
(e) sec 320 cot 260 / tan 640 cosec 580
(f) cos 340 cos 330 / sin 570 sin 560
Solution:
(a) sin 620 / cos 280
This can be written as,
= sin (900 – 280) / cos 280
= cos 280 / cos 280
We get,
= 1
(b) sec 340 / cosec 560
This can be written as,
= sec (900 – 560) / cosec 560
= cosec 560 / cosec 560
We get,
= 1
(c) tan 120 / cot 780
This can be written as,
= tan (900 – 780) / cot 780
= cot 780 / cot 780
We get,
= 1
(d) sin 250 cos 430 / sin 470 cos 650
This can be written as,
= sin (900 – 650) cos (900 – 470) / sin 470 cos 650
= cos 650 sin 470 / sin 470 cos 650
We get,
= 1
(e) sec 320 cot 260 / tan 640 cosec 580
This can be written as,
= sec (900 – 580) cot (900 – 640) / tan 640 cosec 580
= cosec 580 tan 640 / tan 640 cosec 580
We get,
= 1
(f) cos 340 cos 330 / sin 570 sin 560
This can be written as,
= cos (900 – 560) cos (900 – 570) / sin 570 sin 560
= sin 560 sin 570 / sin 570 sin 560
We get,
= 1
12. Evaluate the following:
(a) sin 310 – cos 590
(b) cot 270 – tan 630
(c) cosec 540 – sec 360
(d) sin 280 sec 620 + tan 490 tan 410
(e) sec 160 tan 280 – cot 620 cosec 740
(f) sin 220 cos 440 – sin 460 cos 680
Solution:
(a) sin 310 – cos 590
= sin (900 – 590) – cos 590
= cos 590 – cos 590
We get,
= 0
(b) cot 270 – tan 630
= cot (900 – 630) – tan 630
= tan 630 – tan 630
We get,
= 0
(c) cosec 540 – sec 360
= cosec (900 – 360) – sec 360
= sec 360 – sec 360
We get,
= 0
(d) sin 280 sec 620 + tan 490 tan 410
= sin 280 sec (900 – 280) + tan 490 tan (900 – 490)
= sin 280 cosec 280 + tan 490 cot 490
= sin 280 x (1 / sin 280) + tan 490 x (1 / tan 490)
= 1 + 1
We get,
= 2
(e) sec 160 tan 280 – cot 620 cosec 740
= sec (900 – 740) tan (900 – 620) – cot 620 cosec 740
= cosec 740 cot 620 – cot 620 cosec 740
We get,
= 0
(f) sin 220 cos 440 – sin 460 cos 680
= sin (900 – 680) cos (900 – 460) – sin 460 cos 680
= cos 680 sin 460 – sin 460 cos 680
We get,
= 0
13. Evaluate the following:
(a) (sin 360 / cos 540) + (sec 310 / cosec 590)
(b) (tan 420 / cot 480) – (cos 330 / sin 570)
(c) (2 sin 280 / cos 620) + (3 cot 490 / tan 410)
(d) (5 sec 680 / cosec 220) + (3 sin 520 sec 380) / (cot 510 cot 390)
Solution:
(a) (sin 360 / cos 540) + (sec 310 / cosec 590)
This can be written as,
= {sin (900 – 540) / cos 540} + {sec (900 – 590) / cosec 590}
= (cos 540 / cos 540) + (cosec 590 / cosec 590)
= 1 + 1
We get,
= 2
(b) (tan 420 / cot 480) – (cos 330 / sin 570)
This can be written as,
= {tan (900 – 480) / cot 480} – {cos (900 – 570) / sin 570}
= (cot 480 / cot 480) – (sin 570 / sin 570)
= 1 – 1
We get,
= 0
(c) (2 sin 280 / cos 620) + (3 cot 490 / tan 410)
This can be written as,
= {2 sin (900 – 620) / cos 620} + {3 cot (900 – 410) / tan 410}
= (2 cos 620 / cos 620) + (3 tan 410 / tan 410)
= 2 + 3
We get,
= 5
(d) (5 sec 680 / cosec 220) + (3 sin 520 sec 380) / (cot 510 cot 390)
This can be written as,
= {5 sec (900 – 220) / cosec 220} + {3 sin 520 sec (900 – 520) / cot 510 cot (900 – 510)}
= (5 cosec 220 / cosec 220) + (3 sin 520 cosec 520 / cot 510 tan 510)
= 5 + {3 sin 520 x (1 / sin 520) / cot 510Â x (1 / cot 510)}
= 5 + 3 / 1
= 5 + 3
We get,
= 8
14. Express each of the following in terms of trigonometric ratios of angles between 00 and 450
(a) sin 650 + cot 590
(b) cos 720 – cos 880
(c) cosec 640 + sec 700
(d) tan 770 – cot 630 + sin 570
(e) sin 530 + sec 660 – sin 500
(f) cos 840 + cosec 690 – cot 680
Solution:
(a) sin 650 + cot 590
This can be written as,
= sin (900 – 250) + cot (900 – 310)
We get,
= cos 250 + tan 310
(b) cos 720 – cos 880
This can be written as,
= cos (900 – 180) – cos (900 – 20)
We get,
= sin 180 – sin 20
(c) cosec 640 + sec 700
This can be written as,
= cosec (900 – 260) + sec (900 – 200)
We get,
= sec 260 + cosec 200
(d) tan 770 – cot 630 + sin 570
This can be written as,
= tan (900 – 130) – cot (900 – 270) + sin (900 – 330)
We get,
= cot 130 – tan 270 + cos 330
(e) sin 530 + sec 660 – sin 500
This can be written as,
= sin (900 – 370) + sec (900 – 240) – sin (900 – 400)
We get,
= cos 370 + cosec 240 – cos 400
(f) cos 840 + cosec 690 – cot 680
This can be written as,
= cos (900 – 60) + cosec (900 – 210) – cot (900 – 220)
We get,
= sin 60 + sec 210 – tan 220
15. Evaluate the following:
(a) sin 350 sin 450 sec 550 sec 450
(b) cot 200 cot 400 cot 450 cot 500 cot 700
(c) cos 390 cos 480 cos 600 cosec 420 cosec 510
(d) sin (350 + θ) – cos (550 – θ) – tan (420 + θ) + cot (480 – θ)
(e) tan (780 + θ) + cosec (420 + θ) – cot (120 – θ) – sec (480 – θ)
(f) (3 sin 370 / cos 530) – (5 cosec 390 / sec 510) + {(4 tan 230 tan 370 tan 670 tan 530) / (cos 170 cos 670 cosec 730 cosec 230)}
(g) (sin 00 sin 350 sin 550 sin 750) / (cos 220 cos 640 cos 680 cos 900)
(h) {(2 sin 250 sin 350 sec 550 sec 650) / (5 tan 290 tan 450 tan 610)} + {(3 cos 200 cos 500 cot 700 cot 400) / (5 tan 200 tan 500 sin 700 sin 400)}
(i) {(3 sin2 400) / (4 cos2 500)} – {(cosec2 280) / (4 sec2 620)} + {(cos 100 cos 250 cos 450 cosec 800) / (2 sin 150 sin 450 sin 650 sec 750)}
(j) {(5 cot 50 cot 150 cot 250 cot 350 cot 450) / (7 tan 450 tan 550 tan 650 tan 750 tan 850)} + {(2 cosec 120 cosec 240 cos 780 cos 660) / (7 sin 140 sin 230 sec 760 sec 670)}
Solution:
(a) sin 350 sin 450 sec 550 sec 450
This can be written as,
= sin (900 – 550) x (1 / √2) x (1 / cos 550) x (√2)
= cos 550 x (1 / cos 550) x (1 / √2) x (√2)
We get,
= 1
(b) cot 200 cot 400 cot 450 cot 500 cot 700
This can be written as,
= cot (900 – 700) x cot (900 – 500) x 1 x cot 500 cot 700
= tan 700 x tan 500 x cot 500 x cot 700
= tan 700 x cot 700 x tan 500 x cot 500
= tan 700 x (1 / tan 700) x tan 500 x (1 / tan 500)
We get,
= 1
(c) cos 390 cos 480 cos 600 cosec 420 cosec 510
This can be written as,
= cos (900 – 510) x cos (900 – 420) x (1 / 2) x (1 / sin 420) x (1 / sin 510)
= sin 510 x sin 420 x (1 / 2) x (1 / sin 420) x (1 / sin 510)
We get,
= 1 / 2
(d) sin (350 + θ) – cos (550 – θ) – tan (420 + θ) + cot (480 – θ)
This can be written as,
= sin {900 – (550 – θ)} – cos (550 – θ) – tan {900 – (480 – θ)} + cot (480 – θ)
= cos (550 – θ) – cos (550 – θ) – cot (480 – θ) + cot (480 – θ)
We get,
= 0
(e) tan (780 + θ) + cosec (420 + θ) – cot (120 – θ) – sec (480 – θ)
This can be written as,
= tan {900 – (120 – θ)} + cosec {900 – (480 – θ)} – cot (120 – θ) – sec (480 – θ)
= cot (120 – θ) + sec (480 – θ) – cot (120 – θ) – sec (480 – θ)
We get,
= 0
(f) (3 sin 370 / cos 530) – (5 cosec 390 / sec 510) + {(4 tan 230 tan 370 tan 670 tan 530) / (cos 170 cos 670 cosec 730 cosec 230)}
This can be written as,
= {3 sin (900 – 530) / cos 530} – {5 cosec (900 – 510) / sec 510} + [{4 tan (900 – 670) tan (900 – 530) x (1 / cot 670) x (1 / cot 530)}] / {cos (900 – 730) cos (900 – 230) x (1 / sin 730) x (1 / sin 230)}
= (3 cos 530 / cos 530) – (5 sec 510 / sec 510) + [4 cot 670 cot 530 x (1 / cot 670) x (1 / cot 530] / {sin 730 sin 230 x (1 / sin 730) x (1 / sin 230)}
On calculating further, we get,
= 3 – 5 + 4
= 2
(g) (sin 00 sin 350 sin 550 sin 750) / (cos 220 cos 640 cos 680 cos 900)
= 0 x sin 350 sin 550 sin 750) / (cos 220 cos 640 cos 680 x 0)
(∵ sin 00 = 0 and cos 900 = 0)
We get,
= 0
(h) {(2 sin 250 sin 350 sec 550 sec 650) / (5 tan 290 tan 450 tan 610)} + {(3 cos 200 cos 500 cot 700 cot 400) / (5 tan 200 tan 500 sin 700 sin 400)}
This can be written as,
= {2 sin (900 – 650) sin (900 – 550) sec 550 sec 650} / {5 tan (900 – 610) x 1 x tan 610} + {3 cos (900 – 700) cos (900 – 400) cot (900 – 200) cot (900 – 500)} / (5 tan 200 tan 500 sin 700 sin 400)
= {2 cos 650 cos 550 x (1 / cos 550) x (1 / cos 650)} / {5 cot 610 x 1 x (1 / cot 610)} + {3 sin 700 sin 400 tan 200 tan 500} / (5 tan 200 tan 500 sin 700 sin 400)
On calculating further, we get,
= (2 / 5) + (3 / 5)
= (2 + 3) / 5
= 5 / 5
= 1
(i) {(3 sin2 400) / (4 cos2 500)} – {(cosec2 280) / (4 sec2 620)} + {(cos 100 cos 250 cos 450 cosec 800) / (2 sin 150 sin 450 sin 650 sec 750)}
= {3 sin2 (900 – 500) / 4 cos2 500} – {cosec2 (900 – 620) / 4 sec2 620} + {cos (900 – 800) cos 250 x (1 / √2) x (1 / sin 800} / {2 sin (900 – 750) x (1 / √2) x sin (900 – 250) x (1 / cos 750)
= 3 cos2 500 / 4 cos2 500) – (sec2 620 / 4 sec2 620) + (sin 800 x cos 250 x (1 / sin 800) / {2 cos 750 x cos 250 x (1 / cos 750)}
On further calculation, we get,
= (3 / 4) – (1 / 4) + (1 / 2)
= (1 / 2) + (1 / 2)
= 1
(j) {(5 cot 50 cot 150 cot 250 cot 350 cot 450) / (7 tan 450 tan 550 tan 650 tan 750 tan 850)} + {(2 cosec 120 cosec 240 cos 780 cos 660) / (7 sin 140 sin 230 sec 760 sec 670)}
= {5 cot (900 – 850) cot (900 – 750) cot (900 – 650) cot (900 – 550) x 1} / (7 x 1 x tan 550 tan 650 tan 750 tan 850) + {2 cosec (900 – 780) cosec (900 – 660) cos 780 cos 660} / {7 sin (900 – 760) sin (900 – 670) sec 760 sec 670}
= (5 tan 850 tan 750 tan 650 tan 550) / (7 x tan 550 tan 650 tan 750 tan 850) + {(2 sec 780 sec 660 x (1 / sec 780) x (1 / sec 660)} / {7 cos 760 cos 670 x (1 / cos 760) x (1 / cos 670)}
On further calculation, we get,
= (5 / 7) + (2 / 7)
= (5 + 2) / 7
= 7 / 7
= 1
Comments