Frank Solutions for Class 9 Maths Chapter 4 Expansions

Frank Solutions for Class 9 Maths Chapter 4 Expansions consist of accurate answers designed by experienced faculty at BYJU’S, which helps students boost their exam preparation. The solutions, given in a step-by-step manner, enable them to grasp the concepts and topics covered in the chapter easily. Solving these problems on a daily basis will improve their conceptual knowledge and thus score well in exams.

Chapter 4 mainly deals with the problems based on Expansions. Students can analyse their preparation level by cross-checking their answers, referring to these solutions provided in PDF. Practising the problems with the help of these solutions will make them understand the various methods to solve complex problems effortlessly. To practise well and score good marks in the annual exam, students can access Frank Solutions for Class 9 Maths Chapter 4 Expansions PDF from the link below.

Frank Solutions for Class 9 Maths Chapter 4 Expansions Download PDF

 

frank solutions class 9 maths chapter 4 01
frank solutions class 9 maths chapter 4 02
frank solutions class 9 maths chapter 4 03
frank solutions class 9 maths chapter 4 04
frank solutions class 9 maths chapter 4 05
frank solutions class 9 maths chapter 4 06
frank solutions class 9 maths chapter 4 07
frank solutions class 9 maths chapter 4 08
frank solutions class 9 maths chapter 4 09
frank solutions class 9 maths chapter 4 10
frank solutions class 9 maths chapter 4 11

 

Access Frank Solutions for Class 9 Maths Chapter 4 Expansions

1. Expand the following:

(i) (a + 4) (a + 7)

(ii) (m + 8) (m – 7)

(iii) (x – 5) (x – 4)

(iv) (3x + 4) (2x – 1)

(v) (2x – 5) (2x + 5) (2x – 3)

Solution:

(i) (a + 4) (a + 7)

= a2 + 4a + 7a + 28

We get,

= a2 + 11a + 28

(ii) (m + 8) (m – 7)

= m2 + 8m – 7m – 56

We get,

= m2 + m – 56

(iii) (x – 5) (x – 4)

= x2 – 5x – 4x + 20

We get,

= x2 – 9x + 20

(iv) (3x + 4) (2x – 1)

= 6x2 – 3x + 8x – 4

We get,

= 6x2 + 5x – 4

(v) (2x – 5) (2x + 5) (2x – 3)

= (4x2 – 25) (2x – 3)

We get,

= 8x3 – 12x2 – 50x + 75

2. Expand the following:

(i) (a + 3b)2

(ii) (2p – 3q)2

(iii) (2a + 1 / 2a)2

(iv) (x – 3y – 2z)2

Solution:

(i) (a + 3b)2

(a + 3b)2 = a2 + 2(a) (3b) + (3b)2 [Using (x + y)2 = x2 + 2xy + y2]

We get,

= a2 + 6ab + 9b2

(ii) (2p – 3q)2

= (2p)2 – 2 (2p) (3q) + (3q)2

We get,

= 4p2 – 12pq + 9q2

(iii) (2a + 1 / 2a)2

= (2a)2 + 2 (2a) (1 / 2a) + (1 / 2a)2

We get,

= {4a2 + 2 + (1 / 4a2)}

(iv) (x – 3y – 2z)2

= x2 + (3y)2 + (2z)2 + 2 (x) (-3y) + 2 (-3y) (-2z) + 2 (x) (-2z)

[Using (a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ac]

We get,

= x2 + 9y2 + 4z2 – 6xy + 12yz – 4xz

3. Find the squares of the following:

(a) 9m – 2n

(b) 3p – 4q

(c) (7x / 9y) – (9y / 7x)

(d) (2a + 3b – 4c)

Solution:

(a) 9m – 2n

(9m – 2n)2 = (9m)2 + 2 (9m) (-2n) + (-2n)2

[Using (x + y)2 = x2 + 2xy + y2]

We get,

= 81m2 – 36mn + 4n2

(b) 3p – 4q

(3p – 4q)2 = (3p)2 – 2 (3p) (4q) + (4q)2

On simplification, we get,

= 9p2 – 12pq + 16q2

(c) {(7x / 9y) – (9y / 7x)}2 = (7x / 9y)2 + 2 (7x / 9y) (9y / 7x) + (9y / 7x)2

On simplification, we get,

= (49x2 / 81y2) + 2 + (81y2 / 49x2)

(d) (2a + 3b – 4c)

(2a + 3b – 4c)2 = (2a)2 + (3b)2 + (-4c)2 + 2(2a) (3b) + 2 (3b) (-4c) + 2 (2a) (-4c)

Using (a+ b+ c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ac

On simplification, we get,

= 4a2 + 9b2 + 16c2 + 12ab -24bc – 16ac

4. Simplify by using the formula:

(i) (5x – 9) (5x + 9)

(ii) (2x + 3y) (2x – 3y)

(iii) (a + b – c) (a – b + c)

(iv) (x + y – 3) (x + y + 3)

(v) (1 + a) (1 – a) (1 + a2)

(vi) {a + (2 / a) – 1}{a – (2 / a) – 1}

Solution:

(i) (5x – 9) (5x + 9)

[Using identity: (a + b) (a – b) = a2 – b2]

= (5x)2 – (9)2

We get,

= 25x2 – 81

(ii) (2x + 3y) (2x – 3y)

[Using identity: (a + b) (a – b) = a2 – b2

= (2x)2 – (3y)2

We get,

= 4x2 – 9y2

(iii) (a + b – c) (a – b + c)

On further calculation, we get,

= (a + b – c) {a – (b – c)}

[Using identity: (a + b) (a – b) = a2 – b2]

= (a)2 – (b – c)2

= a2 – (b2 + c2 – 2bc)

= a2 – b2 – c2 + 2bc

(iv) (x + y – 3) (x + y + 3)

[Using identity: (a + b) (a – b) = a2 – b2]

= (x + y)2 – (3)2

= x2 + y2 + 2xy – 9

(v) (1 + a) (1 – a) (1 + a2)

[Using identity: (a + b) (a – b) = a2 – b2]

= {(1)2 – (a)2} (1 + a2)

= (1 – a2) (1 + a2)

= (1)2 – (a2)2

We get,

= 1 – a4

(vi) {a + (2 / a) – 1} {a – (2 / a) – 1}

[Using identity: (a + b) (a – b) = a2 – b2]

= (a – 1)2 – (2 / a)2

We get,

= a2 + 1 – 2a – (4 / a2)

5. Evaluate the following without multiplying:

(i) (95)2

(ii) (103)2

(iii) (999)2

(iv) (1005)2

Solution:

(i) (95)2

Using (x + y)2 = x2 + 2xy + y2

We get,

(95)2 = (100 – 5)2

= (100)2 – 2 (100) (5) + (5)2

= 10000 – 1000 + 25

We get,

= 9025

(ii) (103)2

Using (x + y)2 = x2 + 2xy + y2

We get,

(103)2 = (100 + 3)2

= (100)2 + 2 (100) (3) + (3)2

= 10000 + 600 + 9

We get,

= 10609

(iii) (999)2

(999)2 = (1000 – 1)2

= (1000)2 – 2 (1000) (1) + (1)2

= 1000000 – 2000 + 1

We get,

= 998001

(iv) (1005)2

(1005)2 = (1000 + 5)2

= (1000)2 + 2 (1000) (5) + (5)2

= 1000000 + 10000 + 25

We get,

= 1010025

6. Evaluate, using (a + b) (a – b) = a2 – b2

(i) 399 × 401

(ii) 999 × 1001

(iii) 409 × 5.1

(iv) 15.9 × 16.1

Solution:

(i) 399 × 401

399 × 401 = (400 – 1) (400 + 1)

= (400)2 – (1)2

On further calculation, we get,

= 160000 – 1

We get,

= 159999

(ii) 999 × 1001

999 × 1001 = (1000 – 1) (1000 + 1)

= (1000)2 – (1)2

On further calculation, we get,

= 1000000 – 1

We get,

= 999999

(iii) 4.9 × 5.1

4.9 × 5.1 = (5 – 0.1) (5 + 0.1)

= (5)2 – (0.1)2

= 25 – 0.01

We get,

= 24.99

(iv) 15.9 × 16.1

15.9 × 16.1 = (16 – 0.1) (16 + 0.1)

= (16)2 – (0.1)2

= 256 – 0.01

We get,

= 255.99

7. If a – b = 10 and ab = 11; find a + b

Solution:

Given

a – b = 10 and ab = 11

We know that,

(a – b)2 = a2 – 2ab + b2

(10)2 = a2 – 2 (11) + b2

100 = a2 + b2 – 22

On further calculation, we get,

a2 + b2 = 100 + 22

a2 + b2 = 122

[Using (a + b)2 = a2 + b2 + 2ab]

We get,

(a + b)2 = 122 + 2 (11)

(a + b)2 = 122 + 22

(a + b)2 = 144

(a + b) = √144

We get,

(a + b) = ± 12

8. If x + y = 9, xy = 20; find:

(i) x – y

(ii) x2 – y2

Solution:

(i) Given

x + y = 9, xy = 20

We know that,

(a + b)2 = a2 + 2ab + b2

(x + y)2 = x2 + y2 + 2xy

x2 + y2 + 2xy = 81

x2 + y2 = 81 – 2(xy)

x2 + y2 = 81 – 2 (20)

x2 + y2 = 81 – 40

x2 + y2 = 41

We know that,

(a – b)2 = a2 – 2ab + b2

(x – y)2 = x2 – 2xy + y2

(x – y)2 = x2 + y2 – 2xy

(x – y)2 = 41 – 2 (20)

(x – y)2 = 41 – 40

(x – y)2 = 1

x – y = ± 1

(ii) We know that,

(x – y) (x + y) = x2 – y2

x2 – y2 = (± 1) (9)

We get,

x2 – y2 = ± 9

9. Find the cube of:

(i) 2a – 5b

(ii) 4x + 7y

(iii) 3a + (1 / 3a)

(iv) 4p – (1 / p)

(v) (2m / 3n) + (3n / 2m)

(vi) a – (1 / a) + b

Solution:

(i) 2a – 5b

Using (a – b)3 = a3 – b3 – 3ab (a – b)

(2a – 5b)3 = (2a)3 – (5b)3 – 3 (2a) (5b) (2a – 5b)

On further calculation, we get,

= 8a3 – 125b3 – 30ab (2a – 5b)

= 8a3 – 125b3 – 60a2b + 150ab2

(ii) 4x + 7y

Using (a + b)3 = a3 + b3 + 3ab (a + b)

(4x + 7y)3 = (4x)3 + (7y)3 + 3 (4x) (7y) (4x + 7y)

On further calculation, we get,

= 64x3 + 343y3 + 84xy (4x + 7y)

= 64x3 + 343y3 + 336x2y + 588xy2

(iii) {3a + (1 / 3a)}3

Using (a + b)3 = a3 + b3 + 3ab (a + b)

{3a + (1 / 3a)}3 = (3a)3 + (1 / 3a)3 + 3 (3a) (1 / 3a) {3a + (1 / 3a)}

We get,

= 27a3 + (1 / 27a3) + 9a + (1/ a)

(iv) {4p – (1 / p)}3

Using (a – b)3 = a3 – b3 – 3ab (a – b)

{4p – (1 / p)}3 = (4p)3 – (1 / p)3 – 3 (4p) (1 / p) {4p – (1 / p)}

We get,

= 64p3 – (1 / p3) – 48p + (12 / p)

(v) {(2m / 3n) + (3n / 2m)}3

Using (a + b)3 = a3 + b3 + 3ab (a + b)

= (2m / 3n)3 + (3n / 2m)3 + {3 (2m / 3n) (3n / 2m)}{(2m / 3n) + (3n / 2m)}

We get,

= (8m3 / 27n3) + (27n3 / 8m3) + (2m / n) + (9n / 2m)

(vi) {a – (1 / a) + b}3

Using (a + b + c)3 = a3 + b3 + c3 + 3a2b + 3a2c + 3b2a + 3c2a + 6abc

{a – (1 / a) + b}3 = a3 + (-1 / a)3 + b3 + 3a2 (-1 / a) + 3a2b + 3 (-1 / a)2b + 3(-1/a)2a + 3b2a + 3b2(-1/a)+ 6a(-1 / a)b

We get,

= a3 – (1 / a3) + b3 – 3a + 3a2b + 3b/a2 + 3/a + 3b2a – 3b2/ a – 6b

10. If {5x + (1 / 5x)} = 7; find the value of 125x3 + (1 / 125x3)

Solution:

Given

{5x + (1 / 5x)} = 7

Using {a + (1 / a)}3 = a3 + (1 / a3) + 3 {a + (1 / a)}

We get,

{5x + (1 / 5x)}3 = (5x)3 + (1 / 5x)3 + 3 {5x + (1 / 5x)}

343 = 125x3 + (1 / 125x3) + 3 (7)

We get,

125x3 + (1 / 125x3) = 343 – 21

125x3 + (1 / 125x3) = 322

11. If {3x – (1 / 3x)} = 9; find the value of 27x3 – (1 / 27x3)

Solution:

Given

{3x – (1 / 3x)} = 9

Using {a – (1 / a)}3 = a3 – (1 / a3) – 3 {a – (1 / a)}

We get,

{3x – (1 / 3x)}3 = (3x)3 – (1 / 3x)3 – 3 {3x – (1 / 3x)}

729 = 27x3 – (1 / 27x3) – 3(9)

On calculating further, we get,

27x3 – (1 / 27x3) = 729 + 27

27x3 – (1 / 27x3) = 756

12. If (x + 1 / x) = 5, find the value of {x2 + (1 / x2), x3 + (1 / x3) and x4 + (1 / x4)}

Solution:

Given

(x + 1 / x) = 5 …… (1)

On squaring both sides,

We get,

(x + 1 / x)2 = (5)2

x2 + (1 / x2) + 2 = 25

x2 + (1 / x2) = 25 – 2

x2 + (1 / x2) = 23 ….. (2)

Now,

Cubing both sides of equation (1),

We get,

{x + (1 / x)}3 = (5)3

x3 + (1 / x3) + 3 {x + (1 / x)} = 125

x3 + (1 / x3) + 3 (5) = 125

On calculating further, we get,

x3 + (1 / x3) = 125 – 15

x3 + (1 / x3) = 110

Squaring on both sides of equation (2), we get,

{x2 + (1 / x2)}2 = (23)2

x4 + (1 / x4) + 2 = 529

x4 + (1 / x4) = 529 – 2

x4 + (1 / x4) = 527

13. If {a – (1 / a)} = 7, find {a2 + (1 / a2)}, {a2 – (1 / a2) and {a3 – (1 / a3)}

Solution:

Given

{a – (1 / a) = 7 …. (1)

Squaring on both sides, we get,

{a – (1 / a)}2 = (7)2

a2 + (1 / a2) – 2 = 49

a2 + (1 / a2) = 49 + 2

a2 + (1 / a2) = 51

Now,

{a + (1 / a)}2 = a2 + (1 / a2) + 2

Substitute the value of a2 + (1 / a)2, and we get,

= 51 + 2

= 53

a + (1 / a) = ± √53

Now,

a2 – (1 / a2) = {a + (1 / a)}{a – (1 / a)}

= (± √53) (7)

We get,

= (± 7√53)

Cubing on both sides of equation (1), we get,

{a – (1 / a)}3 = (7)3

a3 – (1 / a3) – 3 {a – (1 / a)} = 343

a3 – (1 / a3) – 3 (7) = 343

a3 – (1 / a3) = 343 + 21

a3 – (1 / a3) = 364

14. If {a2 + (1 / a2)} = 14; find the value of

(i) {a + (1 / a)}

(ii) {a3 + (1 / a3)}

Solution:

(i) Using (a + b)2 = a2 + 2ab + b2

{a + (1 / a)}2 = a2 + 2a (1 / a) + (1 / a)2

{a + (1 / a)}2 = a2 + 2 + (1 / a2)

{a + (1 / a)}2 = a2 + (1 / a2) + 2

Substitute the value of {a2 + (1 / a2)}, we get,

{a + (1 / a)}2 = 14 + 2

{a + (1 / a)}2 = 16

{a + (1 / a)} = ± 4

Therefore, the value of {a + (1 / a)} = ± 4

(ii)

{a3 + (1 / a3)} = {a + (1 / a)} {(a2 + (1 / a2) – 1}

[Using a3 + b3 = (a + b) (a2 + b2 – ab)]

We get,

{a3 + (1 / a3)} = (± 4) (14 – 1)

{a3 + (1 / a3)}= (± 4) (13)

{a3 + (1 / a3)}= (± 52)

15. If {m2 + (1 / m2) = 51; find the value of m3 – (1 / m3)

Solution:

m2 + (1 / m2) = 51

We know that,

{m – (1 / m)}2 = m2 + (1 / m2) – 2

{m – (1 / m)}2 = 51 – 2

{m – (1 / m)}2 = 49

{m – (1 / m)}2 = (7)2

{m – (1 / m)} = 7

Cubing on both sides, we get,

{m – (1 / m)}3 = (7)3

m3 – (1 / m3) – 3 {m – (1 / m)}= 343

m3 – (1 / m3) – 3 (7) = 343

m3 – (1 / m3) – 21 = 343

m3 – (1 / m3) = 343 + 21

We get,

m3 – (1 / m3) = 364

Comments

Leave a Comment

Your Mobile number and Email id will not be published.

*

*