ML Aggarwal Solutions for Class 10 Maths Chapter 18 Trigonometric Identities is the best resource for students who are looking for reference material. It’s highly suggested that students use these solutions to solve problems as they are in accordance with the latest syllabus of the ICSE board. Students aiming to score well in the examinations can access the ML Aggarwal Solutions for Class 10 Maths Chapter 18 Trigonometric Identities PDF, which is available in the link given below.
Chapter 18 explains the proof of various trigonometric identities and solutions of trigonometric equations, which are crucial from the exam perspective. The solutions are created by subject experts at BYJU’S in order to help students prepare confidently for the board exams and other competitive exams at various levels. Referring to the PDF of ML Aggarwal Solutions will build a strong foundation over the concepts covered in this chapter.
ML Aggarwal Class 10 Maths Chapter 18 :
Access ML Aggarwal Solutions for Class 10 Maths Chapter 18 Trigonometric Identities
Exercise 18
1. If A is an acute angle and sin A = 3/5, find all other trigonometric ratios of angle A (using trigonometric identities).
Solution:
Given,
sin A = 3/5 and A is an acute angle
So, in ∆ABC we have ∠B = 90o
And,
AC = 5 and BC = 3
By Pythagoras theorem,
AB = √(AC2 – BC2)
= √(52 – 32) = √(25 – 9) = √16
= 4
Now,
cos A = AB/AC = 4/5
tan A = BC/AB = 3/4
cot A = 1/tan θ = 4/3
sec A = 1/cos θ = 5/4
cosec A = 1/sin θ = 5/3
2. If A is an acute angle and sec A = 17/8, find all other trigonometric ratios of angle A (using trigonometric identities).
Solution:
Given,
sec A = 17/8 and A is an acute angle
So, in ∆ ABC we have ∠B = 90o
And,
AC = 17 and AB = 8
By Pythagoras theorem,
BC = √(AC2 – AB2)
= √(172 – 82) = √(289 – 64) = √225
= 15
Now,
sin A = BC/AC = 15/17
cos A = 1/sec A = 8/17
tan A = BC/AB = 15/8
cot A = 1/tan A= 8/15
cosec A = 1/sin A = 17/15
3. Express the ratios cos A, tan A and sec A in terms of sin A.
Solution:
We know that,
sin2 A + cos2 A = 1
So,
cos A = √(1 – sin2 A)
tan A = sin A/cos A = sin A/ √(1 – sin2 A)
sec A = 1/cos A = 1/ (√1 – sin2 A)
4. If tan A = 1/√3, find all other trigonometric ratios of angle A.
Solution:
Given, tan A = 1/√3
In the right ∆ ABC,
tan A = BC/AB = 1/√3
So,
BC = 1 and AB = √3
By Pythagoras theorem,
AC = √(AB2 + BC2) = √[(√3)2 + (1)2]
= √(3 + 1) = √4 = 2
Hence,
sin A = BC/AC = ½
cos A = AB/AC = √3/2
cot A = 1/tan A = √3
sec A = 1/cos A = 2/√3
cosec A = 1/sin A = 2/1 = 2
5. If 12 cosec θ = 13, find the value of (2 sin θ – 3 cos θ)/ (4 sin θ – 9 cos θ)
Solution:
Given,
12 cosec θ = 13
⇒ cosec θ = 13/12
In right ∆ ABC,
∠A = θ
So, cosec θ = AC/BC = 13/12
AC = 13 and BC = 12
By Pythagoras theorem,
AB = √(AC2 – BC2)
= √[(13)2 – (12)2]
= √(169 – 144)
= √25
= 5
Now,
sin θ = BC/AC = 12/13
cos θ = AB/AC = 5/13
Hence,
Without using trigonometric tables, evaluate the following (6 to 10):
6. (i) cos2 26o + cos 64o sin 26o + (tan 36o/ cot 54o)
(ii) (sec 17o/ cosec 73o) + (tan 68o/ cot 22o) + cos2 44o + cos2 46o
Solution:
Given,
(i) cos2 26o + cos 64o sin 26o + (tan 36o/ cot 54o)
= cos2 26o + cos (90o – 16o) sin 26o + [tan 36o/ cot (90o – 54o)]
= [cos2 26o + sin2 26o] + (tan 36o/ tan 36o)
= 1 + 1 = 2
(ii) (sec 17o/ cosec 73o) + (tan 68o/ cot 22o) + cos2 44o + cos2 46o
= [sec 17o/ cosec (90o – 73o)] + [(tan 90o – 22o)/ cot 22o] + cos2 (90o – 44o) + cos2 46o
= [sec 17o/ sec 17o] + [cot 22o/ cot 22o] + [sin2 46o + cos2 46o]
= 1 + 1 + 1
= 3
7. (i) (sin 65o/ cos 25o) + (cos 32o/sin 58o) – sin 28o sec 62o + cosec2 30o
(ii) (sin 29o/ cosec 61o) + 2 cot 8° cot 17° cot 45° cot 73° cot 82° – 3(sin² 38° + sin² 52°).
Solution:
Given,
(i) (sin 65o/ cos 25o) + (cos 32o/sin 58o) – sin 28o sec 62o + cosec2 30o
= (sin 65o/ cos (90o – 65o)) + (cos 32o/sin (90o – 32o)) – sin 28o sec (90o – 28o) + 22
= (sin 65o/sin 65o) + (cos 32o/cos 32o) – [sin 28o x cosec 28o] + 4
= 1 + 1 – 1 + 4
= 5
(ii) (sin 29o/ cosec 61o) + 2 cot 8° cot 17° cot 45° cot 73° cot 82° – 3(sin² 38° + sin² 52°).
= (sin 29o/ cosec (90o – 29o)) + [2 cot 8° cot 17° cot 45° cot (90° – 17o) cot (90o – 8o)] – 3(sin² 38° + sin² (90° – 38o))
= (sin 29o/ sin 29o) + [2 cot 8° cot 17° cot 45° tan 17o tan 8o] – 3(sin² 38° + cos² 38°)
= 1 + 2[(cot 8° tan 8o) (cot 17° tan 17o) cot 45°] – 3(1)
= 1 + 2[1 x 1 x 1] – 3
= 1 + 2 – 3
= 0
8. (i) (sin 35o cos 55o + cos 35o sin 55 o)/ (cosec2 10o – tan2 80 o)
(ii) sin2 34o + sin2 56o + 2 tan18o tan 72o – cot2 30o
Solution:
Given,
(i) (sin 35o cos 55o + cos 35o sin 55 o)/ (cosec2 10o – tan2 80 o)
(ii) sin2 34o + sin2 56o + 2 tan18o tan 72o – cot2 30o
= sin2 34o + sin2 (90o – 34o) + 2 tan18o tan (90o – 18o) – cot2 30o
= [sin2 34o + cos2 34o] + 2 tan18o cot 18o – cot2 30o
= 1 + 2 x 1 – (√3)2
= 1 + 2 – 3
= 0
9. (i) (tan 25o/ cosec 65o)2 + (cot 25o/ sec 65o)2 + 2 tan 18o tan 45o tan 75o
(ii) (cos2 25o + cos2 65o) + cosec θ sec (90o – θ) – cot θ tan (90o – θ)
Solution:
Given,
(i) (tan 25o/ cosec 65o)2 + (cot 25o/ sec 65o)2 + 2 tan 18o tan 45o tan 75o
(ii) (cos2 25o + cos2 65o) + cosec θ sec (90o – θ) – cot θ tan (90o – θ)
= cos2 25o + cos2 (90o – 25o) + cosec θ sec (90o – θ) – cot θ. cot θ
= (cos2 25o + sin2 25o) + (cosec2 θ – cot2 θ)
= 1 + 1 = 2
10. (i) 2(sec² 35° – cot² 55°) –
(ii)
Solution:
Given,
11. Prove that following:
(i) cos θ sin (90° – θ) + sin θ cos (90° – θ) = 1
(ii) tan θ/ tan (90o – θ) + sin (90o – θ)/ cos θ = sec2 θ
(iii) (cos (90o – θ) cos θ)/ tan θ + cos2 (90o – θ) = 1
(iv) sin (90o – θ) cos (90o – θ) = tan θ/ (1 + tan2 θ)
Solution:
(i) L.H.S. = cos θ sin (90° – θ) + sin θ cos (90° – θ)
= cos θ x cos θ + sin θ x sin θ
= cos2 θ + sin2 θ
= 1 = R.H.S.
(ii) L.H.S = tan θ/ tan (90o – θ) + sin (90o – θ)/ cos θ
= tan θ/ cot θ + cos θ/ cos θ
= tan θ/ (1/tan θ) + 1
= tan2 θ + 1 = sec2 θ = R.H.S.
(iii) L.H.S. = (cos (90o – θ) cos θ)/ tan θ + cos2 (90o – θ)
= (sin θ cos θ)/ tan θ + sin2 θ
= (sin θ cos θ)/ (sin θ/ cos θ) + sin2 θ
= cos2 θ + sin2 θ
= 1 = R.H.S.
Prove that following (12 to 30) identities, where the angles involved are acute angles for which the trigonometric ratios as defined:
12. (i) (sec A + tan A) (1 – sin A) = cos A
(ii) (1 + tan2 A) (1 – sin A) (1 + sin A) = 1.
Solution:
Given,
(i) L.H.S = (sec A + tan A) (1 – sin A)
(ii) L.H.S. = (1 + tan2 A) (1 – sin A) (1 + sin A)
13. (i) tan A + cot A = sec A cosec A
(ii) (1 – cos A) (1 + sec A) = tan A sin A.
Solution:
(i) L.H.S. = tan A + cot A
= sin A/cos A + cos A/sin A
= (sin2 A + cos2 A)/ (sin A cos A)
= 1/ (sin A cos A)
= sec A cosec A
= R.H.S
(ii) L.H.S. = (1 – cos A) (1 + sec A)
14. (i) 1/ (1 + cos A) + 1/ (1 – cos A) = 2 cosec2 A
(ii) 1/(sec A + tan A) + 1/(sec A – tan A) = 2 sec A
Solution:
(i) L.H.S. = 1/ (1 + cos A) + 1/ (1 – cos A)
(ii)
15. (i) sin A/ (1 + cos A) = (1 – cos A)/ sin A
(ii) (1 – tan2 A)/ (cot2 A – 1) = tan2 A
(iii) sin A/ (1 + cos A) = cosec A – cot A
Solution:
(i) L.H.S. = sin A/ (1 + cos A)
On multiplying and dividing by (1 – cos A), we have
16. (i) (sec A – 1)/(sec A + 1) = (1 – cos A)/(1 + cos A)
(ii) tan2 θ/ (sec θ – 1)2 = (1 + cos θ)/ (1 – cos θ)
(iii) (1 + tan A)2 + (1 – tan A)2 = 2 sec2 A
(iv) sec2 A + cosec2 A = sec2 A. cosec2 A
Solution:
(iii) L.H.S. = (1 + tan A)2 + (1 – tan A)2
= 1 + 2 tan A + tan2 A + 1 – 2 tan A + tan2 A
= 2 + 2 tan2 A
= 2(1 + tan2 A) [As 1 + tan2 A = sec2 A]
= 2 sec2 A
= R.H.S.
(iv) L.H.S = sec2 A + cosec2 A
= 1/cos2 A + 1/sin2 A
= (sin2 A + cos2 A)/ (sin2 A cos2 A)
= 1/ (sin2 A cos2 A)
= sec2 A cosec2 A = R.H.S
17. (i) (1 + sin A)/ cos A + cos A/ (1 + sin A) = 2 sec A
(ii) tan A/ (sec A – 1) + tan A/ (sec A + 1) = 2cosec A
Solution:
(i) L.H.S. = (1 + sin A)/ cos A + cos A/ (1 + sin A)
18. (i) cosec A/ (cosec A – 1) + cosec A/ (cosec A + 1) = 2 sec2 A
(ii) cot A – tan A = (2cos2 A – 1)/ (sin A – cos A)
(iii) (cot A – 1)/ (2 – sec2 A) = cot A/ (1 + tan A)
Solution:
(i) L.H.S. =
19. (i) tan2 θ – sin2 θ = tan2 θ sin2 θ
(ii) cos θ/ (1 – tan θ) – sin2 θ/ (cos θ – sin θ) = cos θ + sin θ
Solution:
(i) L.H.S = tan2 θ – sin2 θ
20. (i) cosec4 θ – cosec2 θ = cot4 θ + cot2 θ
(ii) 2 sec2 θ – sec4 θ – 2 cosec2 θ + cosec4 θ = cot4 θ – tan4 θ.
Solution:
(i) L.H.S. = cosec4 θ – cosec2 θ
= cosec2 θ (cosec2 θ – 1)
= cosec2 θ cot2 θ [cosec2 θ – 1 = cot2 θ]
= (cot2 θ + 1) cot2 θ
= cot4 θ + cot2 θ
= R.H.S.
(ii) L.H.S. = 2 sec2 θ – sec4 θ – 2 cosec2 θ + cosec4 θ
= 2 (tan2 θ + 1) – (tan2 θ + 1)2 – 2 (1 + cot2 θ) + (1 + cot2 θ)2
= 2 tan2 θ + 2 – (tan4 θ + 2 tan2 θ + 1) – 2 – 2 cot2 θ + (1 + 2 cot2 θ + cot4 θ)
= 2 tan2 θ + 2 – tan4 θ – 2 tan2 θ – 1 – 2 – 2 cot2 θ + 1 + 2 cot2 θ + cot4 θ
= cot4 θ – tan4 θ = R.H.S.
21. (i) = cot θ
(ii) (tan3 θ – 1)/ (tan θ – 1) = sec2 θ + tan θ
Solution:
22. (i) (1 + cosec A)/ cosec A = cos2 A/ (1 – sin A)
(ii)
Solution:
23. (i) = tan A + sec A
(ii) = cosec A – cot A
Solution:
24. (i) = 2 cosec A
(ii) cos A cot A/ (1 – sin A) = 1 + cosec A
Solution:
25. (i) (1 + tan A)/ sin A + (1 + cot A)/ cos A = 2 (sec A + cosec A)
(ii) sec4 A – tan4 A = 1 + 2 tan2 A
Solution:
(ii) sec4 A – tan4 A = 1 + 2 tan2 A
L.H.S. = sec4 A – tan4 A
= (sec2 A – tan2 A) (sec2 A + tan2 A)
= (1 + tan4 A – tan4 A) (1 + tan4 A + tan4 A) [As sec2 A = tan4 A + 1]
= 1 (1 + 2 tan2 A)
= 1 + 2 tan2 A = R.H.S.
26. (i) cosec6 A – cot6 A = 3 cot2 A cosec2 A + 1
(ii) sec6 A – tan6 A = 1 + 3 tan2 A + 3 tan4 A
Solution:
(i) cosec6 A – cot6 A = 3 cot2 A cosec2 A + 1
27.
Solution:
(i)
= (cos θ – 1) (2 – 1 – cos θ)/ (cos θ – 1)
= 1 – cos θ
Hence, L.H.S = R.H.S.
28. (i) (sin θ + cos θ) (sec θ + cosec θ) = 2 + sec θ cosec θ
(ii) (cosec A – sin A) (sec A – cos A) sec2A = tan A
Solution:
(i) (sin θ + cos θ) (sec θ + cosec θ) = 2 + sec θ cosec θ
L.H.S. = (sin θ + cos θ) (sec θ + cosec θ)
= R.H.S.
(ii)
29.
Solution:
30. (i) 1/ (sec A + tan A) – 1/cos A = 1/cos A – 1/(sec A – tan A)
(ii) (sin A + sec A)2 + (cos A + cosec A)2 = (1 + sec A cosec A)2
(iii) (tan A + sin A)/ (tan A – sin A) = (sec A + 1)/ (sec A – 1)
Solution:
31. If sin θ + cos θ = √2 sin (90° – θ), show that cot θ = √2 + 1
Solution:
Given, sin θ + cos θ = √2 sin (90° – θ)
sin θ + cos θ = √2 cos θ
On dividing by sin θ, we have
1 + cot θ = √2 cot θ
1 = √2 cot θ – cot θ
(√2 – 1) cot θ = 1
cot θ = 1/ (√2 – 1)
Hence, cot θ = √2 + 1
32. If 7 sin2 θ + 3 cos2 θ = 4, 0° ≤ θ ≤ 90°, then find the value of θ.
Solution:
Given,
7 sin2 θ + 3 cos2 θ = 4, 0° ≤ θ ≤ 90°
3 sin2 θ + 3 cos2 θ + 4 sin2 θ = 4
3 (sin2 θ + 3 cos2 θ) + 4 sin2 θ = 4
3 (1) + 4 sin2 θ = 4
4 sin2 θ = 4 – 3
sin2 θ = ¼
Taking square-root on both sides, we get
sin θ = ½
Thus, θ = 30o
33. If sec θ + tan θ = m and sec θ – tan θ = n, prove that mn = 1.
Solution:
Given,
sec θ + tan θ = m
sec θ – tan θ = n
Now,
mn = (sec θ + tan θ) (sec θ – tan θ)
= sec2 θ – tan2 θ = 1
Thus, mn = 1
34. If x – a sec θ + b tan θ and y = a tan θ + b sec θ, prove that x2 – y2 = a2 – b2.
Solution:
Given,
y = a tan θ + b sec θ
Now,
x2 – y2 = (a sec θ + b tan θ)2 – (a tan θ + b sec θ)2
– Hence proved.
35. If x = h + a cos θ and y = k + a sin θ, prove that (x – h)2 + (y – k)2 = a2.
Solution:
Given,
x = h + a cos θ
y = k + a sin θ
Now,
x – h = a cos θ
y – k = a sin θ
On squaring and adding, we get
(x – h)2 + (y – k)2 = a2 cos2 θ + a2 sin2 θ
= a2 (sin2 θ + cos2 θ)
= a2 (1) [Since, sin2 θ + cos2 θ = 1]
– Hence proved
Chapter Test
1. (i) If θ is an acute angle and cosec θ = √5, find the value of cot θ – cos θ.
(ii) If θ is an acute angle and tan θ = 8/15, find the value of sec θ + cosec θ.
Solution:
Given that θ is an acute angle and cosec θ = √5
So,
sin θ = 1/√5
And, cos θ = √(1 – sin2 θ)
cos θ = √(1 – (1/√5)2)
= √(1 – (1/5))
= √(4/5)
cos θ = 2/√5
Now,
cot θ – cos θ = (cos θ/sin θ) – cos θ
(ii) Given, θ is an acute angle and tan θ = 8/15
In fig. we have
tan θ = BC/AB = 8/15
So, BC = 8 and AB = 15
By Pythagoras theorem, we have
AC = √(AB2 + BC2) = √(52 + 82) = √(25 + 64) = √289
⇒ AC = 17
Now,
sec θ = AC/AB = 17/15
cosec θ = AC/BC = 17/8
So,
sec θ + cosec θ = 17/15 + 17/8
= (136 + 255)/ 120
= 391/120
=
2. Evaluate the following:
(i) 2 x () – tan 45o + tan 13o tan 23o tan 30o tan 67o tan 77o
(ii) + sin2 63o + cos 63o sin 27o
Solution:
3. If 4/3 (sec2 59o – cot2 31o) – 2/3 sin 90o + 3 tan2 56o tan2 34o = x/2, then find the value of x.
Solution:
Given,
4/3 (sec2 59o – cot2 31o) – 2/3 sin 90o + 3 tan2 56o tan2 34o = x/2
4. (i) cos A/ (1 – sin A) + cos A/ (1 + sin A) = 2 sec A
(ii) cos A/ (cosec A + 1) + cos A/ (cosec A – 1) = 2 tan A
Solution:
5. (i)
(ii) (cosec θ – sin θ) (sec θ – cos θ) (tan θ + cot θ) = 1.
Solution:
6. (i) sin2 θ + cos4 θ = cos2 θ + sin4 θ
(ii)
Solution:
Given,
(i) sin2 θ + cos4 θ = cos2 θ + sin4 θ
L.H.S. = sin2 θ + cos4 θ
= (1 – cos2 θ) + cos4 θ
= cos4 θ – cos2 θ + 1
= cos2 θ (cos2 θ – 1) + 1
= cos2 θ (- sin2 θ) + 1
= 1 – sin2 θ cos2 θ
Now,
R.H.S. = cos2 θ + sin4 θ
= (1 – sin2 θ) + sin4 θ
= sin4 θ – sin2 θ + 1
= sin2 θ (sin2 θ – 1) + 1
= sin2 θ (-cos2 θ) + 1
= 1 – sin2 θ cos2 θ
Hence, L.H.S. = R.H.S.
7. (i) sec4 A (1 – sin4 A) – 2 tan2 A = 1
(ii) = sec A + cosec A
Solution:
(i) sec4 A (1 – sin4 A) – 2 tan2 A = 1
L.H.S. = sec4 A (1 – sin4 A) – 2 tan2 A
8. (i) + sin θ cos θ = 1
(ii) (sec A – tan A)2 (1 + sin A) = 1 – sin A.
Solution:
9. (i) = sin A + cos A
(ii) (sec A – cosec A) (1 + tan A + cot A) = tan A sec A – cot A cosec A
(iii)
Solution:
10.
Solution:
11. 2 (sin6 θ + cos6 θ) – 3 (sin4 θ + cos4 θ) + 1 = 0
Solution:
Given,
2 (sin6 θ + cos6 θ) – 3 (sin4 θ + cos4 θ) + 1 = 0
L.H.S. = 2 (sin6 θ + cos6 θ) – 3 (sin4 θ + cos4 θ) + 1
= 2 [(sin2 θ)3 + (cos2 θ)3] – 3 (sin4 θ + cos4 θ) + 1
= 2 [(sin2 θ + cos2 θ) (sin4 θ + cos4 θ – sin2 θ cos2 θ)] – 3 (sin4 θ + cos4 θ) + 1
= 2 (sin4 θ + cos4 θ – sin2 θ cos2 θ) – 3 (sin4 θ + cos4 θ) + 1
= 2 sin4 θ + 2 cos4 θ – 2 sin2 θ cos2 θ – 3 sin4 θ – 3 cos4 θ + 1
= 1 – sin4 θ – cos4 θ – 2 sin2 θ cos2 θ
= 1 – [sin4 θ + cos4 θ + 2 sin2 θ cos2 θ]
= 1 – 1
= 0 = R.H.S.
12. If cot θ + cos θ = m, cot θ – cos θ = n, then prove that (m2 – n2)2 = 16.
Solution:
Given,
cot θ + cos θ = m … (i)
cot θ – cos θ = n … (ii)
Adding (i) and (ii), we get
13. If sec θ + tan θ = p, prove that sin θ = (p2 – 1)/ (p2 + 1)
Solution:
Given, sec θ + tan θ = p
14. If tan A = n tan B and sin A = m sin B, prove that cos2 A = (m2 – 1)/ (n2 – 1)
Solution:
Given,
tan A = n tan B and sin A = m sin B
n = tan A/ tan B
m = sin A/ sin B
15. If sec A = x + 1/4x, then prove that sec A + tan A = 2x or 1/2x
Solution:
Given, sec A = x + 1/4x
We know that,
16. When 0° < θ < 90°, solve the following equations:
(i) 2 cos2 θ + sin θ – 2 = 0
(ii) 3 cos θ = 2 sin2 θ
(iii) sec2 θ – 2 tan θ = 0
(iv) tan2 θ = 3 (sec θ – 1).
Solution:
Given, 0° < θ < 90°
(i) 2 cos2 θ + sin θ – 2 = 0
2 (1 – sin2 θ) + sin θ – 2 = 0
2 – 2 sin2 θ + sin θ – 2 = 0
– 2 sin2 θ + sin θ = 0
sin θ (1 – 2 sin θ) = 0
So, either sin θ = 0 or 1 – 2 sin θ = 0
If sin θ = 0
⇒ θ = 0o
And, if 1 – 2 sin θ = 0
sin θ = ½
⇒ θ = 30o
Thus, θ = 0o or 30o
(ii) 3 cos θ = 2 sin2 θ
3 cos θ = 2 (1 – cos2 θ)
3 cos θ = 2 – 2 cos2 θ
2 cos2 θ + 3 cos θ – 2 = 0
2 cos2 θ + 4 cos θ – cos θ – 2 = 0
2 cos θ (cos θ + 2) – 1(cos θ + 2)
(2 cos θ – 1) (cos θ + 2) = 0
So, either 2 cos θ – 1 = 0 or cos θ + 2 = 0
If 2 cos θ – 1 = 0
cos θ = ½
⇒ θ = 60o
And, for cos θ + 2 = 0
⇒ cos θ = -2 which is not possible being out of range.
Thus, θ = 60o
(iii) sec2 θ – 2 tan θ = 0
(1 + tan2 θ) – 2 tan θ = 0
tan2 θ – 2 tan θ + 1 = 0
(tan θ – 1)2 = 0
tan θ – 1 = 0
⇒ tan θ = 1
Thus, θ = 45o
(iv) tan2 θ = 3 (sec θ – 1)
(sec2 θ – 1) = 3 sec θ – 3
sec2 θ – 1 – 3 sec θ + 3 = 0
sec2 θ – 3 sec θ + 2 = 0
sec2 θ – 2 sec θ – sec θ + 2 = 0
sec θ (sec θ – 2) – 1 (sec θ = 2) = 0
(sec θ – 1) (sec θ – 2) = 0
So, either sec θ – 1 = 0 or sec θ – 2 = 0
If sec θ – 1 = 0
sec θ = 1
⇒ θ = 0o
And, if sec θ – 2 = 0
sec θ = 2
⇒ θ = 60o
Thus, θ = 0o or 60o
Comments