Selina Solutions Concise Maths Class 7 Chapter 9 Profit, Loss and Discount Exercise 9A provides students with a clear cut picture of the basic concepts, which are important for the exam. The steps to be followed in determining the selling price is the important concept covered under this exercise. Students are advised to practise the exercise wise problems to score well in the Class 7 exam. In order to gain a hold on the concepts, Selina Solutions Concise Maths Class 7 Chapter 9 Profit, Loss and Discount Exercise 9A, free PDF can be downloaded from the links which are available here.
Selina Solutions Concise Maths Class 7 Chapter 9: Profit, Loss and Discount Exercise 9A Download PDF
Access other exercises of Selina Solutions Concise Maths Class 7 Chapter 9: Profit, Loss and Discount
Access Selina Solutions Concise Maths Class 7 Chapter 9: Profit, Loss and Discount Exercise 9A
Exercise 9A page: 104
1. Find the gain or loss percent, if:
(i) C.P. = ₹ 200 and S.P. = ₹ 224
(ii) C.P. = ₹ 450 and S.P. = ₹ 400
(iii) C.P. = ₹ 550 and gain = ₹ 22
(iv) C.P. = ₹ 216 and loss = ₹ 72
(v) S.P. = ₹ 500 and loss = ₹ 100
Solution:
(i) C.P. = ₹ 200 and S.P. = ₹ 224
We know that
Gain = S.P. – C.P.
So we get
= 224 – 200
= ₹ 24
So we get
Gain percent = (gain × 100)/ C.P.
Substituting the values
= (24 × 100)/ 200
= 12%
(ii) C.P. = ₹ 450 and S.P. = ₹ 400
We know that
Loss = C.P. – S.P.
So we get
= 450 – 400
= ₹ 50
So we get
Loss percent = (loss × 100)/ C.P.
Substituting the values
= (50 × 100)/ 450
= 100/9
= 11 1/9%
(iii) C.P. = ₹ 550 and gain = ₹ 22
We know that
S.P. = C.P. + gain
So we get
= 550 + 22
= ₹ 572
So we get
Gain percent = (gain × 200)/ C.P.
Substituting the values
= (22 × 100)/ 550
= 4%
(iv) C.P. = ₹ 216 and loss = ₹ 72
We know that
S.P. = C.P. – loss
So we get
= 216 – 72
= ₹ 144
So we get
Loss percent = (loss × 100)/ C.P.
Substituting the values
= (72 × 100)/ 216
= 100/3
= 33 1/3%
(v) S.P. = ₹ 500 and loss = ₹ 100
We know that
C.P. = S.P. + loss
So we get
= 500 + 100
= ₹ 600
So we get
Loss percent = (loss × 100)/ C.P.
Substituting the values
= (100 × 100)/ 600
= 50/3
= 16 2/3 %
2. Find the selling price, if:
(i) C.P = ₹ 500 and gain = 25%
(ii) C.P. = ₹ 60 and loss = 12 ½ %
Solution:
(i) C.P = ₹ 500 and gain = 25%
We know that
S.P. = [C.P. (100 + gain percent)]/ 100
Substituting the values
= [500 (100 + 25)]/ 100
We get
= (500 × 125)/ 100
= ₹ 625
(ii) C.P. = ₹ 60 and loss = 12 ½ %
We know that
Loss = 12 ½ % = 25/2%
Here
S.P. = [C.P. (100 – Loss percent)]/ 100
Substituting the values
= [60 (100 – 25/2)]/ 100
So we get
= [60 (200 – 25/ 2)]/ 100
We can write it as
= (60 × 175)/ (2 × 100)
= ₹ 105/2
= ₹ 52.50
3. Rohit bought a tape-recorder for ₹ 1,500 and sold it for ₹ 1,800. Calculate his profit or loss percent.
Solution:
It is given that
C.P of tape-recorder = ₹ 1,500
S.P of tape-recorder = ₹ 1,800
We know that
Gain = S.P – C. P
= 1800 – 1500
= ₹ 300
Gain percent = (Gain × 100)/ C.P
Substituting the values
= (300 × 100)/ 1500
= 20%
4. An article bought for ₹ 350 is sold at a profit of 20%. Find its selling price.
Solution:
It is given that
C.P of an article = ₹ 350
Profit = 20%
We know that
S.P = [C.P (100 + profit percent)]/ 100
Substituting the values
= [350 (100 + 20)]/ 100
So we get
= (350 × 120)/ 100
= ₹ 420
5. An old machine is bought for ₹ 1,400 and is sold at a loss of 15%. Find its selling price.
Solution:
It is given that
C.P. of the old machine = ₹ 1,400
Loss percent = 15%
We know that
S.P = [C.P (100 – loss percent)]/ 100
Substituting the values
= [1400 (100 – 15)]/ 100
By further calculation
= (1400 × 85)/ 100
= ₹ 1190
6. Oranges are bought at 5 for ₹ 10 and sold at 6 for ₹ 15. Find profit or loss as percent.
Solution:
We know that
LCM of 5 and 6 = 30
Consider that 30 oranges are bought
So the C.P of 30 oranges = (30 × 10)/ 5 = ₹ 60
S.P of 30 oranges = (30 × 15)/ 6 = ₹ 75
Gain = S.P – C.P
Substituting the values
= 75 – 60
= ₹ 15
Gain percent = (gain × 100)/ C.P
Substituting the values
= (15 × 100)/ 60
= 25%
7. A certain number of articles are bought at 3 for ₹ 150 and all of them are sold at 4 for ₹ 180. Find the loss or gain as percent.
Solution:
We know that
LCM of 3 and 4 = 12
Consider that 12 articles are bought
So the C.P of 12 articles = (150 × 12)/ 3 = ₹ 600
S.P of 12 articles = (180 × 12)/ 4 = ₹ 540
Loss = C.P – S.P
Substituting the values
= 600 – 540
= ₹ 60
Loss percent = (loss × 100)/ C.P
Substituting the values
= (60 × 100)/ 600
= 10%
8. A vendor bought 120 sweets at 20 p each. In his house, 18 were consumed and he sold the remaining at 30p each. Find his profit or loss as percent.
Solution:
No. of sweets bought = 120
C.P of 120 sweets = (120 × 20)/ 100 = ₹ 24
No. of sweets consumed = 18
So the balance sweets = 120 – 18 = 102
S.P of 102 sweets = (102 × 30)/ 100 = ₹ 30.60
Gain = S.P – C.P
Substituting the values
= 30.60 – 24
= ₹ 6.60
Gain percent = (gain × 100)/ C.P
Substituting the values
= (6.60 × 100)/ 24
Multiplying both numerator and denominator by 100
= (660 × 100)/ (100 × 24)
= 55/2
= 27.5%
9. The cost price of an article is ₹ 1,200 and selling price is 5/4 times of its cost price.
Find:
(i) Selling price of the article,
(ii) Profit or loss as percent.
Solution:
It is given that
C.P of an article = ₹ 1,200
We know that
S.P = 5/4 of C.P
Substituting the values
S.P = 5/4 × 1200 = ₹ 1,500
Gain = S.P – C.P
Substituting the values
= 1500 – 1200
= ₹ 300
Gain percent = (gain × 100)/ C.P
Substituting the values
= (300 × 100)/ 1200
= 25%
10. The selling price of an article is ₹ 1,200 and cost price is 5/4 times of its selling price.
Find:
(i) cost price of the article,
(ii) profit or loss as percent.
Solution:
(i) S.P of an article = ₹ 1,200
We know that
C.P = 5/4 of S.P
Substituting the values
= 5/4 × 1200
= ₹ 1,500
(ii) Loss = C.P – S.P
Substituting the values
= 1500 – 1200
= ₹ 300
Loss percent = (loss × 100)/ C.P
Substituting the values
= (300 × 100)/ 1500
So we get
= 100/5
= 20%
Comments