JEE Main 2020 Maths Paper With Solutions Sep 2 Shift 2
a) 9
b) 5
c) 4
d) 20
f(1) = 2
f(x+y) = f(x)+f(y)
x = y = 1
f(2) = 2+2 = 4
x = 2, y = 1
f(3) = 4+2 = 6
g(n) = f(1)+f(2)+………+f(n-1)
= 2+4+6+ ….+ 2(n-1)
= 2Ʃ(n-1)
= 2(n-1)n/2
= n(n-1)
= n2-n
n2-n = 20
n2-n-20 = 0
(n-5)(n+4) = 0
n = 5
Answer:(b)
a) -121/10
b) -72/5
c) 72/5
d) 121/10
Given
11a+55d = 0
a+5d = 0
d = -a/5
Now a1+a3+….+ a23 = ka1
12a+d (2+4+6+…..+22) = ka
12a+2d×66 = ka
12(a+11d) = ka
12(a+11(-a/5)) = ka
12(1-11/5) = k
k = -72/5
Answer: (b)
a) P(E3C)- P(E2C)
b) P(E3)- P(E2C)
c) P(E3C)- P(E2)
d) P(E2C)+ P(E3)
Answer: (c)
a) (-1/2, -1/4]
b) [-1,-1/2]
c) [-3/2, -5/4]
d) (-5/4, -1)
cos4θ+sin4θ+λ = 0
λ = -{1-(1/2)sin22θ}
2(λ+1) = sin22θ
0 ≤2(λ+1) ≤1
0 ≤λ+1 ≤1/2
-1≤ λ ≤ -1/2
Answer: (b)
one of its vertices on the vertex of this parabola, is:
a) 128√3
b) 192√3
c) 64√3
d) 256√3
A: (a cos 300, a sin 300) lies on parabola
(a2/4) = 8×a√3/2
a = 16√3
Area of equilateral triangle, Δ = (√3/4)a2
Δ= (√3/4)×16×16×3
Δ= 192√3
Answer: (b)
a) √6
b) -2√6
c) 6
d) -√6
(3+2i√54)1/2-(3-i2√54)1/2
= (9+6i2+2×3i√6)1/2-(9+6i2-2×3i√6)1/2
= ((3+√6i)2)1/2 -((3-√6i)2)1/2
= (3+√6i)( 3-√6i)
= -2√6i
Answer: (b)
a) -5
b) 10
c) 5
d) -10
Required plane is
-4(x-3)+5(y-1)+7(z-1) = 0
4x-5y-7z = 0
(α, -3,5) lies on 4x-5y-7z = 0
α = 5
Answer: (c)
a) contains more than two elements.
b) is a singleton.
c) contains exactly two elements.
d) is an empty set.
Clearly |P|= 0
PX = 0 has infinite solutions
The line concurrence passes through (0,0,0) which is centre of sphere x2+y2+z2 = 1.
Diameter will intersect at two points.
two solutions (exactly) exist.
Answer: (c)
a) y+4x = 2
b) 2y+x = 4
c) x+4y = 8
d) y = 4x+2
At x = 0, y = 1+cos2(0) = 2
P;(0,2)
y = (1+x)2y+cos2(sin-1x)
y = (1+x)2y+cos(cos-1√(1-x2))2
= (1+x)2y+ (√(1-x2))2
y = (1+x)2y+1-x2
Differentiating w.r.t x
Now y’ = (1+x)2y {(2y/1+x)+ln(1+x)2y’}-2x
y’ at (0,2) = 4-0 = 4
N0: y-2 = (-1/4)(x-0)
N0: 4y-8 = -x
x+4y = 8
Answer: (c)
a) α3-6α2+16 = 0
b) 3α2-8α3/2+8 = 0
c) α3-6α3/2-16 = 0
d) 3α2-8α+8 = 0
Area =
= x2-(x3/3)
= 4/3 [Applying limits]
So
8.α3/2-3α2 = 8
3α2-8α3/2+8 = 0
Answer: (b)
a) increases in (-1, ∞)
b) decreases in (-1,0) and increases in (0, ∞)
c) increases in (-1,0) and decreases in (0, ∞)
d) decreases in (-1, ∞)
f(x) = (1/x)ln(1+x)
f’(x) = [x/(1+x) – ln(1 + x)]/x2 = [x – (1+x)ln (1+x)]/x2(1+x)
f’<0 ∀ x ∈(-1,∞)
Answer: (d)
a) (p→q) ˄( q→p)
b) (~p) ˄(p ˅q)→q
c) (q→p) ˅~(p→q)
d) (~q)˅( p˄q)→q
p | q | ~p | (p ˅q) | ~p ˄(p˅q) | ~p ˄(p˅q)->q |
T | T | F | T | F | T |
T | F | F | T | F | T |
F | T | T | T | T | T |
F | F | T | F | F | T |
Answer: (b)
a) (0,1)
b) (1,3)
c) (-1,0)
d) (-3,-1)
Let f(x) = a (x-3) (x-α)
f(-1)+f(2) = 0
a[(-1-3) (-1-α)+(2-3)(2-α)] = 0
a[4+4α-2+α]=0
5α+2 = 0
α = -2/5
Answer: (c)
{x+ka}+{x2+(k+2)a}+{x3+(k+4)a}+{x4+(k+6)a}+… where a ≠ 0 and a ≠ 1.
If S = (x10-x+45a(x-1))/(x-1), then k is equal to:
a) 3
b) -3
c) 1
d) 5
S = {x+ka} + {x2+(k+2)a} +{x3+(k+4)a} up to 9 terms
S = (x+x2+….+x9)+a{k+(k+2)+(k+4)+……up to 9 term)}
S = x(1-x9)/(1-x) + a(9k+2×36)
= (x10-x)/(x-1) +9ak+72a
S = (x10-x+45a(x-1))/(x-1)
= (x10-x+(9k+72)a(x-1))/(x-1)
45 = 9k+72
9k = -27
k = -3
Answer: (b)
a) (0, π/4)
b) (0, π/2)
c) (0, 3π/4)
d) (π/4, 3π/4)
L11×L22 >0
sinθ +cosθ > 1
θ ∈(0, π/2)
Answer: (b)
a) 201
b) 199
c) 101
d) 200
Red line = 99 blue line
nC2-n = 99n
n(n-1)/2 = 100n
n-1 = 200
n = 201
Answer: (a)
a) -1/(1+loge2)
b) 1+loge 2
c) 1/(1+loge2)
d) 1/(1-loge2)
2(dy/dx) = 2(y/x)+(y/x)2 HDE
Since y = vx
2(v+x(dv/dx)) = 2v+v2
2(dv/v2) = dx/x
-(2/v) = ln x+c
-2x/y = ln x+c
c = -1
c: ln x+2x/y = 1
for f(1/2) ln(1/2) +(2/2y) = 1
y = 1/(1+ln 2)
Answer (c)
a) 4√5/3
b) 2√5/3
c) 2√6
d) √30
H: x2-y2sec2θ = 10
E: x2sec2θ+y2 = 5
√(1+10cos2θ/10)= √5√(1-5cos2θ/5)
1+cos2θ = 5-5cos2θ
6 cos2θ = 4
cosθ = √(2/3)
LR of ellipse = 2×5×cos2θ/√5
= 2√5×2/3
= 4√5/3
Answer (c)
a) e
b) e2
c) 2
d) 1
Answer: (b)
a) 2/3
b) 3
c) -1/3
d) 1/3
a3+b3+c3 = 2
ATA = I
a2+b2+c2 = 1
ab+bc+ca = 0
Now (a+b+c)2 = Ʃa2+2Ʃab
(Ʃa)2 = 1+0 = 1
Ʃa = 1
Now Ʃa3-3abc = (Ʃa)(Ʃa2– Ʃab)
2-3abc = ± 1(1-0)
2-3abc = ± 1
abc = 1/3 or abc = 1
Answer: (d)
Now (14λ+6)/(λ+1) -3(6λ2)/(λ+1)2 = 6
(14λ+6) (λ+1)—18λ2 = 6(λ+1)2
-4λ2 + 20λ + 6 = 6λ2 + 12λ + 6
10λ2-8λ = 0
λ(10λ-8) = 0
Since λ >0
λ = 0.8
Answer: (0.8)
Solution:
To find
Put 3x = t
=
=
Answer: (1)
y =
where tanθ = 4/3
cos-1[cos(kx+a)] = kx+a as kx+a∈[0, π]
y = cos-1(cos (x+θ)+2 cos-1(2x+θ))….+6cos-1(cos (6x+θ))
y = x+θ+2(2x+θ)+…6(6x+θ)
dy/dx = 1×1+2×2+3×3+….+6×6
dy/dx at x = 0
= 1×1+2×2+3×3+….+6×6
= Ʃ62
= 6×7×13/6
= 91
Answer: (91)
Var(x) = (Ʃbi2/11)- (Ʃbi/11)2
90 = [(11a2+385d2+110ad)/11]-[(11a+55d)/11]2
90 = a2+35d2+10ad- (a+5d)2
90 = a2+35d2+10ad- a2-25d2-10ad
90 = 10d2
9 = d2
d = 3
Answer: (3)
Let 3 consecutive coefficients are nCr-1 : nCr : nCr+1::2:5:12
nCr-1/ nCr = 2/5
and nCr/ nCr+1 = 5/12
r/(n-r+1) = 2/5
and (r+1)/(n-r) = 5/12
7r = 2n+2 and 17r = 5n-12
(2n+2)/7 = (5n-12)/17
34n+34 = 35n-84
n = 118
Answer (118)
Video Lessons – Maths




Comments