JEE Main 2024 Question Paper Solution Discussion Live JEE Main 2024 Question Paper Solution Discussion Live

JEE Main 2022 July 27 – Shift 2 Maths Question Paper with Solutions

The JEE Main 2022 July 27 – Shift 2 Maths Question Paper with Solutions is given on this page. Students are advised to solve the JEE Main 2022 question papers to find out their weak topics and concentrate more on them. Experts at BYJU’S have created the error-free JEE Main 2022 answer keys. Students can revise the JEE Main 2022 question paper with solutions to prepare for any engineering entrance exam.

JEE Main 2022 July 27th Shift 2 Mathematics Question Paper and Solutions

SECTION – A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer :

1. The domain of the function

f(x)=sin1[2x23]+log2(log12(x25x+5))

where [t] is the greatest integer function, is

(A) (52,552)
(B) (552,5+52)
(C) (1,552)
(D) (1,5+52)

Answer (C)

Sol.

-1 ≤ 2x2 – 3 < 2

or

2 ≤ 2x2 < 5

or

1 ≤ x2 < 5/2

x(52,1][1,52)
log12(x25x+5)>0

0 < x2 – 5x + 5 < 1x2 – 5x + 5 > 0 & x2 – 5x + 4 < 0

x(,552)(5+52,)

& x ∈ (-∞, 1) U (4, ∞)

Taking intersection

x(1,552)

 

2. Let S be the set of (α, β), π < α, β < 2π, for which the complex number

1isinα1+2isinα is purely imaginary and 1+icosβ12icosβ is purely real,
Let Zαβ=sin2α+icos2β,(α,β)S. Then
(α,β)S(iZαβ+1iZαβ)
is equal to

(A) 3

(B) 3i

(C) 1

(D) 2 – i

Answer (C)

Sol.

1isinα1+2isinαis purely imaginary
 1isinα1+2isinα+1+isinα12isinα=0
12sin2α=0
 α=5π4,7π4

and

1+icosβ12icosβ
is purely real

1+icosβ12icosβ1icosβ1+2icosβ=0
cosβ=0
β=3π2
S={(5π4,3π2),(7π4,3π2)}

Zαβ = 1 – i and Zαβ = –1 – i

 (α,β)s(iZαβ+1iZαβ)=i(2i)+1i[11+i+11+i]
=2+1i2i2=1

 

3. If α, β are the roots of the equation

x2(5+3log355log53)+3(3(log35)135(log53)231)=0

then the equation, whose roots are α + 1/β and β + 1/α , is

(A) 3x2 – 20x – 12 = 0

(B) 3x2 – 10x – 4 = 0

(C) 3x2 – 10x + 2 = 0

(D) 3x2 – 20x + 16 = 0

Answer (B)

Sol.

3log355log53=3log35(3log35)log53=0
3(log35)135(log53)23=5(log53)235(log53)23=0

Note: In the given equation ‘x’ is missing.

So α, β are the roots of x2 – 5x + 3(-1) = 0

α+β+1α+1β=(α+β)+α+βαβ
=553=103
(α+1β)(β+1α)=2+αβ+1αβ=2313
=43

So Equation must be option (B).

 

4. Let

A=(42αβ)

If A2 + γA + 18I = 0, then det (A) is equal to ______.

(A) –18

(B) 18

(C) –50

(D) 50

Answer (B)

Sol. Characteristic equation of A is given by

|AλI|=0
|4λ2αβλ|=0
λ2(4+β)λ+(4β+2α)=0
So,A2(4+β)A+(4β+2α)I=0
|A|=4β+2α=18

 

5. If for p ≠ q ≠ 0, the function

f(x)=p(729+x)73729+qx39
is continuous at x = 0, then

(A)7pq f(0)1=0
(B)63qf(0)p2=0
(C)21qf(0)p2=0
(D)7pqf(0)9=0

Answer (B)

Sol.

f(x)=p(729+x)73729+qx39
for continuity at x=0,limx0f(x)=f(0)

Now,

limx0f(x)=limx0p(729+x)73729+qx39
p=3(To make indeterminant form)
So,
limx0f(x)=limx0(37+3x)173(729+qx)139
=limx03[(1+x36)171]9[(1+q729x)131]=131713613q729
 f(0)=17q

∴ Option (B) is correct

 

6. Let

f(x)=2+|x||x1|+|x+1|,xR.

Consider(S1):f(32)+f(12)+f(12)+f(32)=2

(S2):22f(x)dx=12

Then,

(A) Both (S1) and (S2) are correct

(B) Both (S1) and (S2) are wrong

(C) Only (S1) is correct

(D) Only (S2) is correct

Answer (D)

Sol.

f(x)=2+|x||x1|+|x+1|,xR
 f(x)={x,x<1x+2,1x<03x+2,0x<1x+4,x1
 f(32)+f(12)+f(12)+f(32)=1+1+3+1=4
and22f(x)dx=21f(x)dx+10f(x)dx+01f(x)dx+12f(x)dx
=[x22]21+[(x+2)22]10+[(3x+2)26]01+[(x+4)22]12
=32+32+72+112=242=12

∴ Only (S2) is correct

 

7. Let the sum of an infinite G.P., whose first term is a and the common ratio is r, be 5. Let the sum of its first five terms be 98/25. Then the sum of the first 21 terms of an AP, whose first term is 10ar, nth term is an and the common difference is 10ar2, is equal to

(A) 21 a11

(B) 22 a11

(C) 15 a16

(D) 14 a16

Answer (A)

Sol. Let first term of G.P. be a and common ratio is r

Then,a1r=5(i)
a(r51)(r1)=98251r5=98125
 r5=27125,r=(35)35
Then,S21=212[2×10ar+20×10ar2]
=21[10ar+1010ar2]=21a11

 

8. The area of the region enclosed by

y4x2,x29y and y4,
is equal to

(A) 403
(B) 563
(C) 1123
(D) 803

Answer (D)

Sol.

JEE Main 2022 July 27 Shift 2 Maths A8

y4x2,x29y,y4

So, required area

A=204(3y12y)dy
=252    [23y32]04
=103    [4320]=803

 

9.

02(|2x23x|+[x12])dx,
where [t] is the greatest integer function, is equal to

(A) 76
(B) 1912
(C) 3112
(D) 32

Answer (B)

Sol.

02|2x23x|dx+02[x12]dx
=03/2(3x2x2)dx+3/22(2x23x)dx+01/21dx+1/23/20dx+3/221dx
=(3x222x33)|03/2+(2x333x22)|3/2212+12
=(2782712)+(16362712+278)
=1912

 

10. Consider a curve y = y(x) in the first quadrant as shown in the figure. Let the area A1 is twice the area A2. Then the normal to the curve perpendicular to the line 2x – 12y = 15 does NOT pass through the point.

JEE Main 2022 July 27 Shift 2 Maths Q10

(A)(6,21)(B)(8,9)(C)(10,4)(D)(12,15)

Answer (C)

Sol.

JEE Main 2022 July 27 Shift 2 Maths A10

A1+A2=xy8 & A1=2A2
A1+A12=xy8
A1=23(xy8)
4xf(x)dx=23(xf(x)8)

Differentiate w.r.t.x

f(x)=23{xf(x)+f(x)}
23xf(x)=13f(x)
2f(x)f(x)dx=dxx
2lnf(x)=lnx+lncf2(x)=cx

Which passes through (4, 2)

4=c×4c=1

Equation of required curve y2 = x

Equation of normal having slope (–6) is

y=6x2(14)(6)14(6)3y=6x+57

Which does not pass through (10, –4)

 

11. The equations of the sides AB, BC and CA of a triangle ABC are 2x + y = 0, x + py = 39 and xy = 3, respectively and P(2, 3) is its circumcentre. Then which of the following is NOT true?

(A)(AC)2=9p(B)(AC)2+p2=136(C)32<area(ABC)<36(D)34<area(ABC)<38

Answer (D)

Sol. Intersection of 2x + y = 0 and xy = 3 :A(1, –2)

JEE Main 2022 July 27 Shift 2 Maths A11

Equation of perpendicular bisector of AB is

x – 2y = –4

Equation of perpendicular bisector of AC is

x + y = 5

Point B is the image of A in line x – 2y + 4 = 0

which can be obtained as

B(135,265)

Similarly vertex C : (7, 4)

Equation of line BC : x + 8y = 39

So, p = 8

AC=(71)2+(4+2)2=62

Area of triangle ABC = 32.4

 

12. A circle C1 passes through the origin O and has diameter 4 on the positive x-axis. The line y = 2x gives a chord OA of circle C1. Let C2 be the circle with OA as a diameter. If the tangent to C2 at the point A meets the x-axis at P and y-axis at Q, then QA :AP is equal to

(A) 1 : 4

(B) 1 : 5

(C) 2 : 5

(D) 1 : 3

Answer (A)

Sol. Equation of C1

x2 + y2 – 4x = 0

Intersection with

y = 2x

x2+4x24x=0
5x24x=0x=0,45y=0,85
A:(45,85)

JEE Main 2022 July 27 Shift 2 Maths A12

Tangent of C2 atA(45,85)
x+2y=4P:(4,0),Q:(0,2)
QA:AP=1:4

 

13. If the length of the latus rectum of a parabola, whose focus is (a, a) and the tangent at its vertex is x + y = a, is 16, then |a| is equal to :

(A) 22
(B) 23
(C) 42
(D) 4

Answer (C)

Sol.

Equation of tangent at vertex :Lx+ya=0
Focus:F(a,a)Perpendicular distance of L from F
=|a+aa2|=|a2|
Length of latus rectum=4|a2|
Given 4|a2|=16
 |a|=42

 

14. If the length of the perpendicular drawn from the point P(a, 4, 2), a> 0 on the line

x+12=y33=z11is 26 units and Q(α1,α2,α3)
is the image of the point P in this line, then
a+i=13αi
is equal to :

(A) 7

(B) 8

(C) 12

(D) 14

Answer (B)

Sol. PR is perpendicular to given line, so

JEE Main 2022 July 27 Shift 2 Maths A14

2(2λ1a)+3(3λ1)1(λ1)=0
 a=7λ2
 Now PR=26
 (5λ+1)2+(3λ1)2+(λ+1)2=24
5λ22λ3=0λ=1 or 35
 a>0 so λ=1 and a=5
 Now i=13αi=2( Sum of co-ordinate of R)(Sum of coordinates of P)
=2(7)11=3
a+i=13αi=5+3=8

 

15. If the line of intersection of the planes ax + by = 3 and ax + by + cz = 0, a> 0 makes an angle 30° with the plane yz + 2 = 0, then the direction cosines of the line are :

(A) 12,12,0
(B) 12,12,0
(C) 15,25,0
(D) 12,32,0

Answer (B)

Sol.

P1:ax+by+0z=3,normal vector :n1=(a,b,0)

P2:ax+by+cz=0,normal vector :n2=(a,b,c)

Vector parallel to the line of intersection =n1×n2n1×n2=(bc,ac,0)
Vector normal to 0.x+yz+2=0 is n3=(0,1,1)
Angle between line and plane is 30 |0ac+0b2c2+c2a22|=12
 a2=b2
 Hence,n1×n2=(ac,ac,0)
 Direction ratios =(12,12,0)

 

16. Let X have a binomial distribution B(n, p) such that the sum and the product of the mean and variance of X are 24 and 128 respectively. If

P(X>n3)=k2n,
then k is equal to :

(A) 528

(B) 529

(C) 629

(D) 630

Answer (B)

Sol. Mean = np = 16

Variance = npq = 8

 q=p=12 and n=32P(x>n3)=p(x=n2)+p(x=n1)+p(x=n)
=(32C2+32C1+32C0)12n
=5292n

 

17. A six faced die is biased such that

3 × P (a prime number) = 6 × P (a composite number) = 2 × P (1).

Let X be a random variable that counts the number of times one gets a perfect square on some throws of this die. If the die is thrown twice, then the mean of X is :

(A) 311
(B) 511
(C) 711
(D) 811

Answer (D)

Sol. Let P(a prime number) = α

P(a composite number) = β

and P(1) = γ

3α=6β=2γ=k(say) and 3α+2β+γ=1
 k+k3+k2=1 k=611

Mean = np where n = 2

and p = probability of getting perfect square

=P(1)+P(4)=k2+k6=411
 So, mean =2(411)=811

 

18. The angle of elevation of the top P of a vertical tower PQ of height 10 from a point A on the horizontal ground is 45°, Let R be a point on AQ and from a point B, vertically above R, the angle of elevation of P is 60°. If

BAQ=30
, AB = d and the area of the trapezium PQRB is α, then the ordered pair (d, α) is :

(A) (10(31),25)
(B) (10(31),252)
(C) (10(3+1),25)
(D) (10(3+1),252)

Answer (A)

Sol. Let BR = x

JEE Main 2022 July 27 Shift 2 Maths A18

xd=12x=d2
10x10x3=310x=1033x
2x=10(31)
x=5(31)
d=2x=10(31)
α=12(x+10)(10x3)=Area(PQRB)
=12(535+10)(1053(31))
=12(53+5)(1015+53)=12(7525)=25

 

19.

 Let S={0(0,π2):m=19sec(θ+(m1)π6)sec(θ+mπ6)=83}
Then

(A) S={π12}
(B) S={2π3}
(C) θSθ=π2
(D) θSθ=3π4

Answer (C)

Sol.

S={0(0,π2):m=19sec(θ+(m1)π6)sec(θ+mπ6)=83}
m=191cos(θ+(m1)π6)cos(θ+mπ6)
1sin(π6)m=19sin[(θ+mπ6)(θ+(m1)π6)]cos(θ+(m1)π6)cos(θ+mπ6)
=2m=19[tan(θ+mπ6)tan(θ+(m1)π6)]
 Now,m=1   2[tan(θ+π6)tan(θ)]
m=22[tan(θ+2π6)tan(θ+π6)]...m=92[tan(θ+9π6)tan(θ+8π6)]
 =2[tan(θ+3π2)tanθ]=83
=2[cotθ+tanθ]=83
=2×22sinθcosθ=83
=1sin2θ=23
 sin2θ=32
2θ=π3   2θ=2π3
θ=π6   θ=π3
θi=π6+π3=π2

 

20. If the truth value of the statement

(P(R))((R)Q)
is F, then the truth value of which of the following is F?

(A)PQ  R
(B)RQ  P
(C)(PQ)  R
(D)(RQ)  P

Answer (D)

Sol.

P(R)X((R)Q)Y=False

XY = False

X Y X Y
F F T
T T T
F T T
T F F
PR=Tand(R)Q=F
P=TR=TR=F
P=T,Q=F and R=FTQ=F
Q=FNow(RQ)→∼P
(FF)FFF=False

 

SECTION – B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a NUMERICAL VALUE. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. 06.25, 07.00, –00.33, –00.30, 30.27, –27.30) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.

1.

Consider a matrix A=[αβγα2β2γ2β+γγ+αα+β]
where α, β, γ are three distinct natural numbers.

Ifdet(adj(adj(adj(adj A))))(αβ)16(βγ)16(γα)16=232×316,
then the number of such 3-tuples (α, β, γ) is _________.

Answer (42)

Sol.

det(A)=|αβγα2β2γ2β+γγ+αα+β|
R3R3+R1
(α+β+γ)|αβγα2β2γ2111|
det(A)=(α+β+γ)(αβ)(βγ)(γα)
Also, det (adj (adj (adj (adj (A)))))

=(det(A))24=(det(A))16
 (α+β+γ)16(αβ)16(βγ)16(γα)16(αβ)16(βγ)16(γα)16=(4.3)16
α+β+γ=12
(α,β,γ)distinct natural triplets
=11C213C2(4)=55112=42

 

2. The number of functions f, from the set

A={xN:x210x+90} to the set B={n2:nN}
such that
f(x)(x3)2+1, for every xA,
is _________.

Answer (1440)

Sol.

A={xN,   x210x+90}
={1,2,3,,9}
B={1,4,9,16,}
f(x)(x3)2+1
f(1)5, f(2)2,f(9)37

x = 1 has 2 choices

x = 2 has 1 choice

x = 3 has 1 choice

x = 4 has 1 choice

x = 5 has 2 choices

x = 6 has 3 choices

x = 7 has 4 choices

x = 8 has 5 choices

x = 9 has 6 choices

∴ Total functions = 2 × 1 × 1 × 1 × 2 × 3 × 4 × 5 × 6 = 1440

 

3. Let for the 9th term in the binomial expansion of (3 + 6x)n, in the increasing powers of 6x, to be the greatest for x = 3/2, the least value of n is n0. If k is the ratio of the coefficient of x6 to the coefficient of x3, then k + n0 is equal to :

Answer (24)

Sol.

(3+6x)n=3n(1+2x)n

If T9 is numerically greatest term

T8T9T10
nC73n7(6x)7nC83n8(6x)8nC93n9(6x)9
 n!(n7)!7!9n!(n8)!8!3(6x)n!(n9)!9!(6x)2
 9(n7)(n8)18(32)(n8)8369.894
7227(n7) and 279(n8)
293n and n11
n0=10
For(3+6x)10
Tr+1=10Cr            310r(6x)r
For coeff. of x6r=610C634.66
For coeff. ofx3r=310C337.63
 k=10C610C334663763=10!7!3!6!4!10!8
k=14k+n0=24

 

4.

23131×7+4333+22132×11+6353+4333+23133×15++303293+283273++231315×63
  is equal to _______.

Answer (120)

Sol.

Tn=k=1n[(2k)3(2k1)3]n(4n+3)
=k=1n4k2+(2k1)2+2k(2k1)n(4n+3)
=k=1n(12k26k+1)n(4n+3)
=2n(2n2+3n+1)3n23n+nn(4n+3)
=n2(4n+3)n(4n+3)=n
 Tn=n
Sn=n=115Tn=15×162=120

5. A water tank has the shape of a right circular cone with axis vertical and vertex downwards. Its semi-vertical angle is tan-1(3/4). Water is poured in it at a constant rate of 6 cubic meter per hour. The rate (in square meter per hour), at which the wet curved surface area of the tank is increasing, when the depth of water in the tank is 4 meters, is

Answer (5)

Sol.

JEE Main 2022 July 27 Shift 2 Maths NQA 5

tan θ = 3/4

v=13πr2h(i)

And

tanθ=34=rh(ii)

i.e. if h = 4, r = 3

v=13πr2(4r3)
dvdt=4π93r2drdt6=4π3(9)drdt
drdt=12π

Curved area =

πrr2+h2
=πrr2+16r29
=53πr2
dAdt=103πrdrdt
=103π312π=5

 

6. For the curve

C:(x2+y23)+(x2y21)5=0,
the value of 3yy3y,at the point
(α, α), α > 0, on C is equal to ________.

Answer (16)

Sol.

C:(x2+y23)+(x2y21)5=0
for point (α, α).

α2+α23+(α2α21)5=0
 α=2
.

On differentiating(x2+y23)+(x2y21)5=0 we getx+yy+5(x2y21)4(xyy)=0(i)

When

x=y=2
then
y=32
.

Again on differentiating eq. (i) we get :

1+(y)2+yy+20(x2y21)(2x2yy)
(xyy)+5(x2y21)4(1y2yy)=0

For

x=y=2
and
y=32
we get
y=2342
3yy3y=332(2)3(2342)=16

 

7. Let

f(x)=min{[x1],[x2],.,[x10]}
where [t] denotes the greatest integer ≤t. Then
010f(x)dx+010(f(x))2dx+010|f(x)|dx
is equal to ________.

Answer (385)

Sol.

f(x)=min{[x1],[x2],..,[x10]}=[x10]

Also

|f(x)|={f(x),if x10f(x),if x10
 010f(x)dx+010(f(x))2dx+010(f(x))dx
=010(f(x))2dx
=102+92+82++12=10×11×216=385

 

8. Let f be a differential function satisfying

f(x)=2303f(λ2x3)dλ,x>0 and f(1)=3.
If y = f(x) passes through the point (α, 6), then α is equal to _____

Answer (12)

Sol.

 f(x)=2303f(λ2x3)dλ,x>0(i)

On differentiating both sides w.r.t., x, we get

f(x)=2303λ23f(λ2x3)dλ
f(x)=1303λ2λ3f(λ2x3)dλ
3f(x)=[λxf(λ2x3)]03031xf(λ2x3)dx
3xf(x)=3f(x)32f(x)
xf(x)=f(x)2

On integrating we get :

In y=12 In x+ In c
 f(1)=3 then c=3
(α,6)lies on
y=3x
 6=3αα=12.

 

9. A common tangent T to the curves

C1:x24+y29=1
and
C2:x242y2143=1
does not pass through the fourth quadrant. If T touches C1 at (x1, y1) and C2 at (x2, y2), then |2x1 + x2| is equal to ______.

Answer (20)

Sol. Equation of tangent to ellipse

x24+y29=1
and given slope m is :
y=mx+4m2+9(i)

For slope m equation of tangent to hyperbola is :

y=mx+42m2143(ii)

Tangents from (i) and (ii) are identical then

4m2 + 9 = 42m2 – 143

m=±2          (+2 is not acceptable)
m=2.

Hence

x1=85
and
x2=845
 |2x1+x2|=|165+845|=20

 

10. Let

a,b,c be three non-coplanar vectors such that
 
a×b=4c,b×c=9a and c×a=αb,α>0.
If
|a|+|b|+|c|=136
, then α is equal to ______.

Answer (*)

Sol. Given

a×b=4c(i)
b×c=9a(ii)
c×a=αb(iii)
Taking dot products with c,a,b, we get
ab=bc=ca=0

Hence

(i)|a||b|=4|c|(iv)
(ii)|b||c|=9|a|(v)
(iii)|c||a|=α|b|(vi)

Multiplying (iv), (v) and (vi)

|a||b||c|=36α(vii)

Dividing (vii) by (iv)

 |c|2=9α|c|=3α(viii)

Dividing (vii) by (v)

 |a|2=4α|a|=2α

Dividing (viii) by (vi)

 |b|2=36|b|=6

Now, as given,

3α+2α+6=136α=4336

Download PDF of JEE Main 2022 July 27 Shift 2 Maths Paper & Solutions

july 27 jee main s2 2022 shift 2 mathematics solution 1
july 27 jee main s2 2022 shift 2 mathematics solution 2
july 27 jee main s2 2022 shift 2 mathematics solution 3
july 27 jee main s2 2022 shift 2 mathematics solution 4
july 27 jee main s2 2022 shift 2 mathematics solution 5
july 27 jee main s2 2022 shift 2 mathematics solution 6
july 27 jee main s2 2022 shift 2 mathematics solution 7
july 27 jee main s2 2022 shift 2 mathematics solution 8
july 27 jee main s2 2022 shift 2 mathematics solution 9
july 27 jee main s2 2022 shift 2 mathematics solution 10
july 27 jee main s2 2022 shift 2 mathematics solution 11

JEE Main 2022 July 27th Shift 2 Paper Analysis

33,633

Comments

Leave a Comment

Your Mobile number and Email id will not be published.

*

*