JEE Main 2024 Question Paper Solution Discussion Live JEE Main 2024 Question Paper Solution Discussion Live

JEE Main 2022 July 28 – Shift 1 Maths Question Paper with Solutions

The JEE Main 2022 July 28 – Shift 1 Maths Question Paper with Solutions is given on this page. JEE Main 2022 answer keys are prepared by JEE specialists at BYJU’S. Students can solve these JEE Main 2022 question papers and find out the topics which they need to learn more. It will also help them to boost their confidence. JEE Main 2022 question paper with solutions is a perfect tool to crack the upcoming entrance exams. Go through the JEE Main 2022 July 28 – Shift 1 Maths Question Paper with Solutions given below.

JEE Main 2022 28th July Shift 1 Mathematics Question Paper and Solutions

SECTION – A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer :

1. Let the solution curve of the differential equation

xdy=(x2+y2+y)dx,x>0
intersect the line x = 1 at y = 0 and the line x = 2 at y = α. Then the value of α is

(A) 12
(B) 32
(C) 32
(D) 52

Answer (B)

Sol.

xdyydxx2+y2=dx
dydx=x2+y2x+yx
dydx=1+y2x2+yx
Let yx=v
v+xdvdx=1+v2+v
dv1+v2=dxx
OR ln(v+1+v2)=lnx+C

at x = 1, y = 0

C = 0

yx+1+y2x2=x

At x = 2,

y2+1+y24=2
1+y24=4+y242y
OR y=32

 

2. Considering only the principal values of the inverse trigonometric functions, the domain of the function

f(x)=cos1(x24x+2x2+3)
is

(A) (,14]
(B) [14,)
(C) (13,)
(C) (,13]

Answer (B)

Sol.

1x24x+2x2+31
x23x24x+2x2+3

⇒ 2x2 – 4x + 5 ≥ 0 & -4x ≤ 1

x ∈ R & x ≥ -1/4 ]

So domain is [14,)

 

3. Let the vectors

a=(1+t)i^+(1t)j^+k^, b=(1t)i^+(1+t)j^+2k^
and
c=ti^tj^+k^,tR
be such that for
α,β,γR, αa+βb+γc=0 α=β=γ=0.
Then, the set of all values of t is

(A) A non-empty finite set

(B) Equal to N

(C)Equal to R{0}
(C)Equal to R

Answer (C)

Sol.

Clearly a,b,c are non-coplanar
|1+t1t11t1+t2tt1|0
(1+t)(1+t+2t)(1t)(1t2t)+1(t2ttt2)0
(3t2+4t+1)(1t)(13t)2t0
(3t2+4t+1)(3t24t+1)2t0
t0

 

4. Considering the principal values of the inverse trigonometric functions, the sum of all the solutions of the equation

cos1(x)2sin1(x)=cos1(2x)
is equal to

(A)0
(B)1
(C) 12
(D) 12

Answer (A)

Sol.

cos1x2sin1x=cos12x
For Domain :x[12,12]
cos1x2(π2cos1x)=cos1(2x)
cos1x+2cos1x=π+cos12x
cos(3cos1x)=cos(cos12x)
4x3=x
x=0,±12

 

5. Let the operations *, ◉ ∈ {∧, ∨}. If (p * q) ◉ (p ◉ ~q) is a tautology, then the ordered pair (*, ◉) is

(A) (∨, ∧)

(B) (∨, ∨)

(C) (∧, ∧)

(D) (∧, ∨)

Answer (B)

Sol. *, ◉ ∈ {∧, ∨}.

Now for (q * q)◉(p◉~q) is tautology

(A) (∨, ∧) : (pq) ∧ (p ∧ ~q) not a tautology

(B) (∨, ∨) : (pq) ∨ (p ∨ ~q)

= PT is tautology

(C) (∧ , ∧) : (pq) ∧ (p ∧ ~q)

= (pp) ∧ (q ∧ ~q) = pF not a tautology (Fallasy)

(D) (∧, ∨) : (pq) ∨ (p ∨ ~q) not a tautology

 

6. Let a vector

a has magnitude 9. Let a vector b
be such that for every
(x,y)R×R{(0,0)}, the vector (xa+yb)
 
is perpendicular to the vector (6ya18xb).
Then the value of |a×b|
is equal to

(A) 93
(B) 273
(C) 9
(D) 81

Answer (B)

Sol.

(xa+yb)(6ya18xb)=0
(6xy|a|218xy|b|2)+(6y218x2)a.b=0

As given equation is identity

Coefficient of x2 = coefficient of y2 = coefficient of
xy = 0

|a|2=3|b|2|b|=33
and a.b=0
|a×b|=|a||b|sinθ
=9.33.1=273

 

7. For t ∈ (0, 2π), if ABC is an equilateral triangle with vertices A(sint, – cost), B(cost, sint) and C(a, b) such that its orthocentre lies on a circle with centre (1, 1/3), then (a2 – b2) is equal to

(A) 83
(B) 8
(C) 779
(D) 809

Answer (B)

Sol. Let P(h, k) be the orthocentre of ΔABC.

JEE Main 2022 July 28 Shift 1 Maths A7

Then

h=sint+cost+a3,k=cost+sint+b3

(orthocentre coincide with centroid)

(3ha)2+(3kb)2=2
(ha3)2+(kb3)2=29
orthocentre lies on circle with centre
(1,13)

∴ a = 3, b = 1

∴ a2 – b2 = 8

 

8. For α ∈ N, consider a relation R on N given by R = {(x, y) : 3x + αy is a multiple of 7}. The relation R is an equivalence relation if and only if

(A) α = 14

(B) α is a multiple of 4

(C) 4 is the remainder when α is divided by 10

(D) 4 is the remainder when α is divided by 7

Answer (D)

Sol.

R={(x,y):3x+αy is a multiple of 7}
, Now R to be an equivalence relation

(1)R should be reflexive :(a,a)R aN3a+aα=7k
(3+α)a=7k
3+α=7k1α=7k13=7k1+4
(2)R should be symmetric:aRbbRa
aRb:3a+(7k3)b=7m
3(ab)+7kb=7m3(ba)+7ka=7m
So,aRbbRa
R will be symmetric for a=7k13
(3)Transitive : Let(a,b)R,(b,c)R
3a+(7k3)b=7k1 and 3b+(7k23)c=7k3

Adding 3a + 7kb + (7k2 – 3) c = 7 (k1 + k3)

3a + (7k2 – 3) c = 7 m

(a,c)R

R is transitive

a=7k3=7k+4

 

9. Out of 60% female and 40% male candidates appearing in an exam, 60% of candidates qualify it. The number of females qualifying the exam is twice the number of males qualifying it. A candidate is randomly chosen from the qualified candidates. The probability that the chosen candidate is a female, is

(A) 34
(B) 1116
(C) 2332
(D) 1316

Answer (*) None of the given option is correct

Sol.

P(Female)=60100=35
P(Male)=25
P(Female/Qualified)=4060=23
P(Male/Qualified)=2060=13

 

10. If y = y(x), x ∈ (0, π/2) be the solution curve of the differential equation

(sin22x)dydx+(8sin22x+2sin4x)y=2e4x(2sin2x+cos2x),
with y(π4)=eπ, then y(π6)
is equal to

(A) 23e2π/3
(B) 23e2π/3
(C) 13e2π/3
(D) 13e2π/3

Answer (A)

Sol.

(sin22x)dydx+(8sin22x+2sin4x)y=2e4x(2sin2x+cos2x)
dydx+(8+4cot2x)y=2e4x(2sin2x+cos2xsin22x)
Integrating factor(I.F.)=e(8+4cot2x)dx
=e8x+2lnsin2x

Solution of differential equation

y.e8x+2lnsin2x=2e(4x+2lnsin2x)(2sin2x+cos2x)sin22xdx
=2e4x(2sin2x+cos2x)dx
y.e8x+2lnsin2x=e4xsin2x+c
y(π4)=eπ
eπ.e2π=eπ+cc=0
y(π6)=e2π332e(4π3+2ln32)
=e2π3.23

 

11. If the tangents drawn at the points P and Q on the parabola y2 = 2x – 3 intersect at the point R(0, 1), then the orthocentre of the triangle PQR is :

(A) (0, 1)

(B) (2, –1)

(C) (6, 3)

(D) (2, 1)

Answer (B)

Sol.

JEE Main 2022 July 28 Shift 1 Maths A11

Equation of chord PQ

y × 1 = x – 3

xy = 3

For point P & Q

Intersection of PQ with parabola P : (6, 3) Q : (2, –1)

Slope of RQ = –1 & Slope of PQ = 1

Therefore PQR=90Orthocentre is atQ:(2,1)

 

12. Let C be the centre of the circle

x2+y2x+2y=114
and P be a point on the circle. A line passes through the point C, makes an angle of π/4with the line CP and intersects the circle at the Q and R. Then the area of the triangle PQR (in unit2) is :

(A) 2
(B) 22
(C) 8sin(π8)
(D) 8cos(π8)

Answer (B)

Sol.

JEE Main 2022 July 28 Shift 1 Maths A12

QR = 2r = 4[

P=(12+2cosπ4,1+2sinπ4)
=(12+2,1+2)
Area of ΔPQR=12×4×2
=22 sq. units

 

13. The remainder 72022 + 32022 is divided by 5 is:

(A) 0

(B) 2

(C) 3

(D) 4

Answer (C)

Sol. Let E = 72022 + 32022

= (15 – 1)1011 + (10 – 1)1011

= –1 + (multiple of 15) –1 + multiple of 10

= –2 + (multiple of 5)

Hence remainder on dividing E by 5 is 3.

 

14. Let the matrix

A=|010001100|
and the matrix
B0=A49+2A98. If Bn=Adj(Bn1) for all n1,
then det(B4) is equal to :

(A) 328

(B) 330

(C) 332

(D) 336

Answer (C)

Sol.

A=[010001100]
A2=[010001100]×[010001100]=[001100010]
A3=[001100010][010001100]=[100010001]=I
Now B0=A49+2A98=(A3)16.A+2(A3)32.A2
B0=A+2A2=[010001100]+[002200020]=[012201120]
|B0|=9
Since,Bn=Adj|Bn1||Bn|=|Bn1|2
Hence|B4|=|B3|2=|B2|4=|B1|8=|B0|16=|32|16=332

 

15. Let

S1={z1C:|z13|=12} and S2={z2C:|z2|z2+1||=|z2+|z21||}.
Then, for z1 ∈ S1 and z2 ∈ S2, the least value of |z2 – z1| is :

(A) 0
(B) 12
(C) 32
(D) 52

Answer (C)

Sol.

|Z2+|Z21||2=|Z2|Z2+1||2
(Z2+|Z21|)(Z¯2+|Z21|)=(Z2|Z21|)(Z¯2|Z2+1|)
Z2(|Z21|+|Z2+1|)+Z¯2(|Z21|+|Z2+1|)=|Z2+1|2|Z21|2
(Z2+Z¯2)(|Z2+1|+|Z21|)=2(Z2+Z¯2)
Either Z2+Z¯2=0 or |Z2+1|+|Z2+1|=2

So, Z2 lies on imaginary axis or on real axis within [–1, 1]

Also|Z13|=12Z1
lies on the circle having center 3 and radius ½.

JEE Main 2022 July 28 Shift 1 Maths A15

Clearly |Z1Z2|min=32

 

16. The foot of the perpendicular from a point on the circle x2 + y2 = 1, z = 0 to the plane 2x + 3y + z = 6 lies on which one of the following curves?

(A)(6x+5y12)2+4(3x+7y8)2=1,z=62x3y
(B)(5x+6y12)2+4(3x+5y9)2=1,z=62x3y
(C)(6x+5y14)2+9(3x+5y7)2=1,z=62x3y
(D)(5x+6y14)2+9(3x+7y8)2=1,z=62x3y

Answer (B)

Sol. Any point on x2 + y2 = 1, z = 0 is p(cosθ, sinθ, 0)

If foot of perpendicular of p on the plane 2x + 3y + z = 6 is (h, k, l) then

hcosθ2=ksinθ3=l01
=(2cosθ+3sinθ+0622+32+12)=r(let)

h = 2r + cosθ, k = 3r + sinθ, l = r

Hence, h – 2l = cosθ and k – 3l = sinθ

Hence (h – 2l)2 + (k – 3l)2 = 1

When l = 6 – 2h – 3k

Hence required locus is

(x2(62x3y))2+(y3(62x3y))2=1
(5x+6y12)2+4(3x+5y9)2=1,z=62x3y

 

17. If the minimum value of

f(x)=5x22+αx5,x>0
is 14, then the value of α is equal to

(A) 32

(B) 64

(C) 128

(D) 256

Answer (C)

Sol.

f(x)=5x22+αx5  {x>0}
f(x)=5x5αx6=0

JEE Main 2022 July 28 Shift 1 Maths A17

x=(α)1/7
f(x)min=5(α)2/72+αa5/7=14
52α2/7+α2/7=14
72α2/7=14α=128

 

18. Let α, β and γ be three positive real numbers.

Letf(x)=αx5+βx3+γx,xR and g:RR be such that g(f(x))=x for all xR.
If a1, a2, a3, …, an be in arithmetic progression with mean zero, then the value of
f(g(1ni=1nf(ai)))
is equal to

(A) 0

(B) 3

(C) 9

(D) 27

Answer (A)

Sol.

f(g(1ni=1nf(ai)))
a1+a2+a3++ann=0

∴ First and last term, second and second last and so on are equal in magnitude but opposite in sign.

f(x)=αx5+βx3+γx
i=1nf(ai)=α(a15+a25+a35++an5)+β(a13+a23++an3)+γ(a1+a2++an)
=0α+0β+0γ=0
f(g(1ni=1nf(ai)))=1ni=1nf(ai)=0

 

19. Consider the sequence a1, a2, a3, … such that a1 = 1, a2 = 2 and

an+2=2an+1+an for n=1,2,3,
. If
(a1+1a2a3)(a2+1a3a4)(a3+1a4a5)(a30+1a31a32)=2α(61C31),
then α is equal to

(A) –30

(B) –31

(C) –60

(D) –61

Answer (C)

Sol.

an+2=2an+1+an
anan+1+1=an+1an+21
an+2an+1+1an.an+1=2

For n = 1 a3a2a1a2 = 2

n = 2 a4a3a3a2 = 2

n = 3 a5a4a4a3 = 2

:

n = nan + 2an + 1anan + 1 = 2

an + 2 an + 1 = 2n + a1a2

Now,

(a1a2+1)a2a3.(a2a3+1)a3a4.(a3a4+1)a4a5.  .(a30a31+1)a31a32
=34.56.78.  .6162
=260(61C31)

 

20. The minimum value of the twice differentiable function

f(x)=0xextf(t)dt(x2x+1)ex,xR
is

(A) 2e
(B) 2e
(C) e
(D) 2e

Answer (A)

Sol.

f(x)=0xextf(t)dt(x2x+1)ex
f(x)=ex0xetf(t)dt(x2x+1)ex
exf(x)=0xetf(t)dt(x2x+1)

Differentiate on both sides

exf(x)+(f(x)ex)=exf(x)2x+1
f(x)=ex(2x1)
f(x)=ex(2)+ex(2x1)
=ex(2x+1)
x=12
f(x)=ex(2)+(2x+1)ex
=ex(2x+3)
For x=12  f(x)>0
Maxima Max =e12(11)
Max.=2e

 

SECTION – B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a NUMERICAL VALUE. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. 06.25, 07.00, –00.33, –00.30, 30.27, –27.30) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.

1. Let S be the set of all passwords which are six to eight characters long, where each character is either an alphabet from {A, B, C, D, E} or a number from {1, 2, 3, 4, 5} with the repetition of characters allowed. If the number of passwords in S whose at least one character is a number from {1, 2, 3, 4, 5} is α × 56, then α is equal to _______.

Answer (7073)

Sol. If password is 6 character long, tehn

Total number of ways having atleast one number = 106 – 56

Similarly, if 7 character long = 107 – 57

and if 8-character long = 108 – 58

Number of password = (106+107+108)(56+57+58)
=56(26+5.27+25.281525)
=56(64+640+640031)
=7073×56α=7073
.

 

2. Let P(–2, –1, 1) and Q(56/17, 43/17, 111/17) be the vertices of the rhombus PRQS. If the direction ratios of the diagonal RS are α, –1, β, where both α and β are integers of minimum absolute values, then α2 + β2 is equal to ___________.

Answer (450)

Sol.

JEE Main 2022 July 28 Shift 1 Maths NQA 2

d.r’s of RS = < α, –1, β >

d.r’s of PQ=<9017,6017,9417>=<45,30,47>

as PQ and RS are diagonals of rhombus

α(45)+30(1)+47(β)=045α+47β=30
i.e.,α=3047β45

for minimum integral value α = – 15 and β = 15

α2+β2=450.

 

3. Let f : [0, 1] → R be a twice differentiable function in (0, 1) such that f(0) = 3 and f(1) = 5. If the line
y = 2x + 3 intersects the graph of f at only two distinct points in (0, 1) then the least number of points x ∈ (0, 1) at which f”(x) = 0, is ___________.

Answer (2)

Sol.

JEE Main 2022 July 28 Shift 1 Maths NQA 3

If a graph cuts y = 2x + 5 in (0, 1) twice then its concavity changes twice

f”(x) = 0 at atleast two points.

 

4. If

0315x31+x2+(1+x2)3dx=α2+β3,
where α, β are integers, then α + β is equal to

Answer (10)

Sol. Put

x=tanθdx=sec2θ dθ
I=0π315tan3θ.sec2θ dθ1+tan2θ+sec6θ
I=0π315tan2θsec2θ dθsecθ1+secθ
I=0π315(sec2θ1)secθtanθ dθ(1+secθ)

Now put 1 + secθ = t2

sec θ tan θ dθ=2tdt
I=2315((t21)21)2t dtt
I=3023(t42t2+11)dt
I=3023(t42t2)dt
I=30(t552t33)23
=30[(95323)(425423)]
=(543603)(242402)
=16263
α=16 and β=6α+β=10.

 

5. Let

A=[112α] and B=[β110], alpha,βR.
Let α1 be the value of α which satisfies
(A+B)2=A2+[2222]
and α2 be the value of α which satisfies
(A+B)2=B2.
Then |α1 – α2| is equal to _________.

Answer (2)

Sol.

(A+B)2=A2+B2+AB+BA
=A2+[2222]
B2+AB+BA=[2222]   (1)
AB=[112α][β110]=[β11α+2β2]
BA=[β110][112α]=[β+2αβ11]
B2=[β110][β110]=[β2+1ββ1]

By (1) we get

[β2+2β+2α+1α+3β+12]=[2222]
α=1,β=0,α1=1

Similarly If A2 + AB + BA = 0 then

(A2=[112α][112α]=[11α2+2αα22])
[2βαβ+11αα+2β+1+2+2αα22+1]=[0000]
β=0 and α=1α2=1
|α1α2|=|2|=2

 

6. For p, q, ∈ R, consider the real valued function f(x) = (xp)2q, x ∈ R and q > 0, Let a1, a2, a3 and a4 be in an arithmetic progression with mean p and positive common difference. If |f(ai)| = 500 for all i = 1, 2, 3, 4, then the absolute difference between the roots of f(x) = 0 is

Answer (50)

Sol. a1, a2, a3, a4 are in A.P and its mean is p.

a1 = p – 3d, a2 = pd, a3 = p + d and a4 = p + 3d

Where d > 0

|f(ai)|=500
|9d2q|=500
and |d2q|=500  (i)

either 9d2q = d2q

d=0 not acceptable9d2q=qd2
5d2q=0.(ii)
Roots off(x)=0 are p+q and pq
absolute difference between roots=|2q|=50

 

7. For the hyperbola H: x2y2 = 1 and the ellipse

E:x2a2+y2b2=1,a>b>0, let the

(1) eccentricity of E be reciprocal of the eccentricity of H, and

(2) the line y = √(5/2) x + K be a common tangent of E and H.

Then 4(a2 + b2) is equal to _______.

Answer (03.00)

Sol. The equation of tangent to hyperbola x2y2 = 1 within slope m is equal to

y=mx±m2+1 (i)

And for same slope m, equation of tangent to ellipse

x2a2+y2b2=1
is
y=mx±a2m2+b2 (ii)

∵ Equation (i) and (ii) are identical

a2m2 + b2 = m2 – 1

m2=1+b21a2

But equation of common tangent is

y=52x+K
m=5252=1+b21a2

∴ 5a2 + 2b2 = 3 …(i)

Eccentricity of ellipse=12
1b2a2=12

⇒a2 = 2b2 …(ii)

From equation (i) and (ii):

a2=12,b2=14

∴ 4(a2 + b2) = 3

 

8. Let x1, x2, x3, …, x20 be in geometric progression with x1 = 3 and the common ratio 1/2. A new data is constructed replacing each xi by (xii)2. If  x̄ is the mean of new data, then the greatest integer less than or equal to x̄ is _________.

Answer (142)

Sol. x1, x2, x3, …, x20 are in G.P.

x1=3,r=12
x¯=x122xii+i220
=120[12(11240)6(411218)+70×41]
{S=1+2.12+3.122+S2=12+222+
S2=2(11220)20220=411218}
[x¯]=[285820(1224066218).120]=142

 

9.

limx0((x+2cosx)3+2(x+2cosx)2+3sin(x+2cosx)(x+2)3+2(x+2)2+3sin(x+2))100x
is equal to _________.

Answer (01)

Sol. Let x + 2cosx = a

x + 2 = b

as x → 0, a → 2 and b → 2

limx0(a3+2a2+3sinab3+2b2+3sinb)100x
=elimx0100x.(a3b3)+2(a2b2)+3(sinasinb)b3+2b2+3sinb
limx0abx=limx02(cosx1)x=0

= e0

= 1

 

10. The sum of all real value of x for which

3x29x+17x2+3x+10=5x27x+193x2+5x+12
is equal to ________.

Answer (06)

Sol.

3x29x+17x2+3x+10=5x27x+193x2+5x+12
3x29x+175x27x+19=x2+3x+103x2+5x+12
2x22x25x27x+19=2x22x23x2+5x+12

Either x2 + x + 1 = 0 or 5x2 – 7x + 19 = 3x2 + 5x + 12 ⇒ 2x2 – 12x + 7 = 0 ⇒ sum of roots = 6

For x2 + x + 1 = 0, no real roots.

 

Download PDF of JEE Main 2022 July 28 Shift 1 Maths Paper & Solutions

july 28 jee main s2 2022 shift 1 maths solution 1
july 28 jee main s2 2022 shift 1 maths solution 2
july 28 jee main s2 2022 shift 1 maths solution 3
july 28 jee main s2 2022 shift 1 maths solution 4
july 28 jee main s2 2022 shift 1 maths solution 5
july 28 jee main s2 2022 shift 1 maths solution 6
july 28 jee main s2 2022 shift 1 maths solution 7
july 28 jee main s2 2022 shift 1 maths solution 8
july 28 jee main s2 2022 shift 1 maths solution 9
july 28 jee main s2 2022 shift 1 maths solution 10

JEE Main 2022 July 28th Shift 1 Paper Analysis

33,671

Comments

Leave a Comment

Your Mobile number and Email id will not be published.

*

*