JEE Main 2024 Question Paper Solution Discussion Live JEE Main 2024 Question Paper Solution Discussion Live

You visited us 12 times! Enjoying our articles? Unlock Full Access!

JEE Main 2022 June 26 – Shift 2 Maths Question Paper with Solutions

The JEE Main 2022 June 26 – Shift 2 Maths Question Paper with Solutions are given on this page. Students can view the JEE Main 2022 answer keys and find the correct answers. The JEE Main 2022 question paper with solutions help students to get to know the JEE Main 2022 exam pattern and marking scheme. Candidates are advised to study the JEE Main 2022 question paper with solutions, so that they can prepare well for other entrance exams too. They can also download the JEE Main 2022 June 26 – Shift 2 Maths Question Paper with Solutions in PDF format.

JEE Main 2022 26th June Evening Shift Maths Question Paper and Solutions

SECTION – A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer :

1. Let

f:R→R
be defined as f(x) = x – 1 and
g:Rβˆ’{1,βˆ’1}β†’R
be defined as
g(x)=x2x2βˆ’1.

Then the function fog is:

(A) One-one but not onto

(B) Onto but not one-one

(C) Both one-one and onto

(D) Neither one-one nor onto

Answer (D)

Sol.

f:R→R
defined as

f(x) = x – 1 and g : ℝ→ {1, –1} β†’ ℝ,

g(x)=x2x2βˆ’1

Now fog(x)

=x2x2βˆ’1βˆ’1=1x2βˆ’1

∴ Domain of fog(x) = ℝ– {–1, 1}

And range of fog(x) = (β€“βˆž, –1] ⋃ (0, ∞)

Now,

ddx(fog(x))=βˆ’1(x2βˆ’1)2.2x=2x(1βˆ’x2)2
∴ddx(fog(x))>0 for 2x((1βˆ’x)(1+x))2>0
β‡’x((xβˆ’1)(x+1))2<0
∴x∈(βˆ’βˆž,0)

and

ddx(fog(x))<0 for x∈(0,∞)

∴ fog(x) is neither one-one nor onto.

2. If the system of equations Ξ±x + y + z = 5, x + 2y + 3z = 4, x + 3y +5z = Ξ² has infinitely many solutions, then the ordered pair (Ξ±, Ξ²) is equal to:

(A) (1, –3)

(B) (–1, 3)

(C) (1, 3)

(D) (–1, –3)

Answer (C)

Sol. Given system of equations

Ξ±x + y + z = 5

x + 2y + 3z = 4, has infinite solution

x + 3y + 5z = Ξ²

βˆ΄Ξ”=|Ξ±11123135|=0

β‡’ Ξ±(1) – 1(2) + 1(1) = 0

β‡’ Ξ± = 1

and

Ξ”1=|511423Ξ²35|=0

β‡’ 5(1) – 1(20 – 3Ξ²) + 1(12 – 2Ξ²) = 0

β‡’ Ξ² = 3

And

Ξ”2=|1511431Ξ²5|=0

β‡’ (20 – 3Ξ²) – 5(2) + 1(Ξ² – 4) = 0

β‡’ –2Ξ² + 6 = 0

β‡’ Ξ² = 3

Similarly,

β‡’Ξ”3=|11512413Ξ²|=0

β‡’ Ξ² = 3

∴ (α, β) = (1, 3)

3.

If A=βˆ‘n=1∞1(3+(βˆ’1)n)n and B=βˆ‘n=1∞(βˆ’1)n(3+(βˆ’1)n)n,
then A/B is equal to:

(A) 11/9

(B) 1

(C) -11/9

(D) -11/3

Answer (C)

Sol.

A=βˆ‘n=1∞1(3+(βˆ’1)n)n
and
B=βˆ‘n=1∞(βˆ’1)n(3+(βˆ’1)n)n
A=12+142+123+144+….
B=βˆ’12+142βˆ’123+144+….
A=121βˆ’14+1161βˆ’116,B=βˆ’121βˆ’14+1161βˆ’116
A=1115,B=βˆ’915
∴AB=βˆ’119

4.

limxβ†’0cos(sin x)βˆ’cos xx4 is equal to:

(A) 1/3

(B) 1/4

(C) 1/6

(D) 1/12

Answer (C)

Sol.

limxβ†’0cos(sinx)βˆ’cosxx4=limxβ†’02sin(x+sinx).sin(xβˆ’sinx2)x4
=limxβ†’02.((x+sinx2)(xβˆ’sinx2)x4)
=limxβ†’012.((x+xβˆ’x33!+x55!….)(xβˆ’x+x33!…)x4)
=limxβ†’012.(2βˆ’x23!+x45!….)(13!βˆ’x25!βˆ’1)
=16

5. Let f(x) = min {1, 1 + x sin x}, 0 ≀ x ≀ 2Ο€. If m is the number of points, where f is not differentiable, and n is the number of points, where f is not continuous, then the ordered pair (m, n) is equal to

(A) (2, 0)

(B) (1, 0)

(C) (1, 1)

(D) (2, 1)

Answer (B)

Sol. f(x) = min{1, 1 + xsinx}, 0 ≀x ≀2Ο€

f(x)={1,0≀x<Ο€1+xsinx,π≀x≀2Ο€

Now at x = Ο€,

limxβ†’Ο€βˆ’f(x)=1=limxβ†’Ο€+f(x)

∴ f(x) is continuous in [0, 2Ο€]

Now, at x = Ο€

L.H.D=limhβ†’0f(Ο€βˆ’h)βˆ’f(Ο€)βˆ’h=0
R.H.D.=limhβ†’0f(Ο€+h)βˆ’f(Ο€)βˆ’h=1βˆ’(Ο€+h)sinhβˆ’1h

= –π

∴ f(x) is not differentiable at x = Ο€

∴ (m, n) = (1, 0)

6. Consider a cuboid of sides 2x, 4x and 5x and a closed hemisphere of radius r. If the sum of their surface areas is a constant k, then the ratio x : r, for which the sum of their volumes is maximum, is

(A) 2 : 5

(B) 19 : 45

(C) 3 : 8

(D) 19 : 15

Answer (B)

Sol.

∡s1+s2=k
76x2+3Ο€r2=k
∴152xdxdr+6Ο€r=0
∴dxdr=βˆ’6Ο€r152x

Now

V=40x3+23Ο€r3
∴dvdr=120x2.dxdr+2Ο€r2=0
β‡’120x2.(βˆ’6Ο€152rx)+2Ο€r2=0
β‡’120(xr)=2Ο€(1526Ο€)
β‡’(xr)=15231120=1945

7. The area of the region bounded by y2 = 8x and y2 = 16(3 – x) is equal to

(A) 323
(B) 403

(C) 16

(D) 19

Answer (C)

Sol.

c1:y2=8x
c2:y2=16(3βˆ’x)

JEE Main 2022 June 26 Shift 2 Maths A7

Solving c1 and c2

48 – 16x = 8x

x = 2

∴ y = ± 4

∴ Area of shaded region

=2∫04{(48βˆ’y216)βˆ’(y28)}dy
=18[48yβˆ’y3]04=16

8.

If βˆ«1x1βˆ’x1+xdx=g(x)+c,g(1)=0, then g(12)
is equal to

(A) loge(3βˆ’13+1)+Ο€3
(B) loge(3+13βˆ’1)+Ο€3
(C) loge(3+13βˆ’1)βˆ’Ο€3
(D) 12loge(3βˆ’13+1)βˆ’Ο€6

Answer (A)

Sol.

∡∫1x1βˆ’x1+xdx=g(x)+c
∫1121x1βˆ’x1+xdx=g(12)βˆ’g(1)
∴g(12)=∫1121x1βˆ’x1+xdx
cotx=cos2ΞΈ
=∫0Ο€61cos2ΞΈ.sinΞΈcosΞΈ(βˆ’2sin2ΞΈ)dΞΈ
=βˆ’βˆ«0Ο€64sin2ΞΈcos2ΞΈdΞΈ
=2∫0Ο€6(1βˆ’2sin2ΞΈ)βˆ’1cos2ΞΈdΞΈ
=2∫0Ο€6(1βˆ’sec2ΞΈ)dΞΈ
=Ο€3βˆ’2.12[In|sec2ΞΈ+tan2ΞΈ|]0Ο€6
=Ο€3βˆ’[In|2+3|βˆ’In1]
=Ο€3+In(12+3)
=Ο€3+In|3βˆ’13+1|

9. If y = y(x) is the solution of the differential equation

xdydx+2y=xex,y(1)=0
then the local maximum value of the function
z(x)=x2y(x)βˆ’ex,x∈R
is

(A) 1 – e

(B) 0

(C) 1/2

(D) 4eβˆ’e

Answer (D)

Sol.

xdydx+2y=xex,y(1)=0
dydx+2xy=ex, then e∫2xdxdx=x2
y.x2=∫x2exdx
yx2=x2exβˆ’βˆ«2xexdx
=x2exβˆ’2(xexβˆ’ex)+c
yx2=x2exβˆ’2xex+2ex+c
yx2=(x2βˆ’2x+2)ex+c
0=e+cβ‡’c=βˆ’e
y(x).x2βˆ’ex=(xβˆ’1)2exβˆ’e
z(x)=(xβˆ’1)2exβˆ’e

For local maximum z'(x) = 0

∴2(xβˆ’1)ex+(xβˆ’1)2ex=0

∴ x = –1

And local maximum value = z(-1)

=4eβˆ’e

10. If the solution of the differential equation

dydx+ex(x2βˆ’2)y=(x2βˆ’2x)(x2βˆ’2)e2x
satisfies y(0) = 0, then the value of y(2) is ______.

(A) –1

(B) 1

(C) 0

(D) e

Answer (C)

Sol.

∡dydx+ex(x2βˆ’2)y=(x2βˆ’2x)(x2βˆ’2)e2x

Here, I.F.

=e∫ex(x2βˆ’2)dx
=e(x2βˆ’2x)ex

∴ Solution of the differential equation is

y.e(x2βˆ’2x)ex=∫(x2βˆ’2x)(x2βˆ’2)e2x.e(x2βˆ’2x)exdx
=∫(x2βˆ’2x)ex.(x2βˆ’2)ex.e(x2βˆ’2x)exdx

Let

(x2βˆ’2x)ex=t
∴(x2βˆ’2)exdx=dt
y.e(x2βˆ’2x)ex=∫t.etdt
y.e(x2βˆ’2x)ex=(x2βˆ’2xβˆ’1)e(x2βˆ’2x)ex+c

∴ y(0) = 0

∴ c = 1

∴y=(x2βˆ’2xβˆ’1)+e(2xβˆ’x2)ex

∴ y(2) = –1 + 1 = 0

11. If m is the slope of a common tangent to the curves

x216+y29=1
and x2 + y2 = 12, then 12m2 is equal to:

(A) 6

(B) 9

(C) 10

(D) 12

Answer (B)

Sol.

C1:x216+y29=1
and
C2:x2+y2=12

Let

y=mxΒ±16m2+9
be any tangent to C1 and if this is also tangent to C2 then

|16m2+9m2+1|=12
β‡’16m2+9=12m2+12
β‡’4m2=3β‡’12m2=9

12. The locus of the mid-point of the line segment joining the point (4, 3) and the points on the ellipse x2 + 2y2 = 4 is an ellipse with eccentricity:

(A) 32
(B) 122
(C) 12
(D) 12

Answer (C)

Sol. Let

Let P(2cosΞΈ,2sinΞΈ) be any point on ellipse x24+y22=1
  and Q(4, 3) and let (h, k) be the mid point of PQ then

h=2cosΞΈ+42,k=2sinΞΈ+32
∴cosΞΈ=hβˆ’2,sinΞΈ=2kβˆ’32
∴(hβˆ’2)2+(2kβˆ’32)2=1
β‡’(xβˆ’2)21+(yβˆ’32)212=1
∴e=1βˆ’12=12

13. The normal to the hyperbola

x2a2βˆ’y29=1
at the point (8, 3√3) on it passes through the point:

(A) (15,βˆ’23)
(B) (9,23)
(C) (βˆ’1,93)
(D) (βˆ’1,63)

Answer (C)

Sol. Given hyperbola :

x2a2βˆ’y29=1

∡ It passes through

(8,33)
∡64a2βˆ’279=1β‡’a2=16

Now, equation of normal to hyperbola

16x8+9y33=16+9
β‡’2x+3y=25….(i)
(-1, 9√3) satisfies (i)

14. If the plane 2x + y – 5z = 0 is rotated about its line of intersection with the plane 3x – y + 4z – 7 = 0 by an angle of Ο€/2, then the plane after the rotation passes through the point:

(A) (2, –2, 0)

(B) (–2, 2, 0)

(C) (1, 0, 2)

(D) (–1, 0, –2)

Answer (C)

Sol. P1 : 2x + y – 52 = 0, P2 : 3x – y + 4z – 7 = 0

Family of planes P1 and P2

P:P1+Ξ»P2
∴P:(2+3Ξ»)x+(1βˆ’Ξ»)y+(βˆ’5+4Ξ»)zβˆ’7Ξ»=0
∡PβŠ₯P1∴4+6Ξ»+1βˆ’Ξ»+25βˆ’20Ξ»=0
Ξ»=2

∴ P : 8x – y + 32 – 14 = 0

It passes through the point (1, 0, 2).

15. If the lines

rβ†’=(i^βˆ’j^+k^)+Ξ»(3j^βˆ’k^)
and
rβ†’=(Ξ±i^βˆ’j^)+ΞΌ(2j^βˆ’3k^)
are co-planar, then the distance of the plane containing these two lines from the point (Ξ±, 0, 0) is :

(A) 29
(B) 211
(C) 411

(D) 2

Answer (B)

Sol. ∡ Both lines are coplanar, so

|Ξ±βˆ’10βˆ’103βˆ’120βˆ’3|=0
β‡’Ξ±=53

Equation of plane containing both lines

|xβˆ’1y+1zβˆ’103βˆ’120βˆ’3|=0

β‡’ 9x + 2y + 6z = 13

So, distance of (5/3, 0, 0) from this plane

=281+4+36=211

16. Let

aβ†’=i^+j^+2k^,bβ†’=2iΛ™βˆ’3j^+k^
and
cβ†’=i^βˆ’j^+k^
be three given vectors.
Let vβ†’ be a vector in the plane of aβ†’ and bβ†’ whose projection on cβ†’ is 23.

If vβ†’.j^=7, then vβ†’.(i^+k^) is equal to:

(A) 6

(B) 7

(C) 8

(D) 9

Answer (D)

Sol. Let

v→=λ1a→+λ2b→,
where Ξ»1, Ξ»2 ∈ ℝ.

=(Ξ»1+2Ξ»2)i^+(Ξ»1βˆ’3Ξ»2)j^+(2Ξ»1+Ξ»2)k^
∡Projection of vβ†’ on cβ†’ is 23
∴λ1+2Ξ»2βˆ’Ξ»1+3Ξ»2+2Ξ»1+Ξ»23=23
∴λ1+3Ξ»2=1…..(i)

and

vβ†’.j^=7β‡’Ξ»1βˆ’3Ξ»2=7…..(ii)

from equation (i) and (ii)

Ξ»1 = 4, Ξ»2 = – 1

∴vβ†’=2i^+7j^+7k^
∴vβ†’.(i^+k^)=2+7

= 9

17. The mean and standard deviation of 50 observations are 15 and 2 respectively. It was found that one incorrect observation was taken such that the sum of correct and incorrect observations is 70. If the correct mean is 16, then the correct variance is equal to :

(A) 10

(B) 36

(C) 43

(D) 60

Answer (C)

Sol. Given

xΒ―=15,Οƒ=2β‡’Οƒ2=4

∴ x2 + x2 + …… + x50 = 15 Γ— 50 = 750

4=x12+x22….+x50250βˆ’225
∴x12+x22+….+x502=50Γ—229

Let a be the correct observation and b is the incorrect observation then a + b = 70

and

16=75βˆ’b+a50

∴ a – b = 50 β‡’ a = 60, b = 10

∴ Correct variance

=50Γ—229+602βˆ’10250βˆ’256

= 43

18. 16 sin(20Β°) sin(40Β°) sin(80Β°) is equal to :

(A) √3

(B) 2√3

(C) 3

(D) 4√3

Answer (B)

Sol.16 sin20Β° Β· sin40Β° Β· sin80Β°

= 4sin60Β° {∡ 4sinΞΈβ‹…sin(60Β° – ΞΈ)β‹…sin(60Β° + ΞΈ) = sin3ΞΈ }

=23

19. If the inverse trigonometric functions take principal values, then

cosβˆ’1(310cos(tanβˆ’1(43))+25sin(tanβˆ’1⁑(43)))
is equal to :

(A) 0

(B) Ο€4
(C) Ο€3
(D) Ο€6

Answer (C)

Sol.

cosβˆ’1(310cos(tanβˆ’1(43))+25sin(tanβˆ’1(43)))
=cosβˆ’1(310.35+25.45)
=cosβˆ’1(12)=Ο€3

20. Let r ∈ {p, q, ~p, ~q} be such that the logical statement r ∨ (~p) β‡’ (p ∧ q) ∨ r is a tautology. Then r is equal to :

(A) p

(B) q

(C) ~p

(D) ~q

Answer (C)

Sol. Clearly r must be equal to ~ p

∡ ~ p ∨ ~ p = ~ p

and (p ∧ q) ∨ ~ p = p

∴ ~ p β‡’ p = tautology.

SECTION – B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a NUMERICAL VALUE. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. 06.25, 07.00, –00.33, –00.30, 30.27, –27.30) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.

1. Let f: ℝ β†’ ℝ satisfy f(x + y) = 2x f(y) + 4y f(x), βˆ€ x, y∈  ℝ. If f(2) = 3, then 14. f'(4)/f'(2) is equal to ___.

Answer (248)

Sol. ∡ f(x + y) = 2x f(y) + 4y f(x) …(1)

Now, f(y + x) 2y f(x) + 4x f(y) …(2)

∴ 2x f(y) + 4y f(x) = 2y f(x) + 4x f(y)

(4y – 2y) f(x) = (4x – 2x) f(y)

f(x)4xβˆ’2x=f(y)4yβˆ’2y=k(Say)

∴ f(x) = k(4x – 2x)

∡ f(2) = 3 then

k=14
∴f(x)=4xβˆ’2x4
∴fβ€²(x)=4xIn4βˆ’2xIn24
fβ€²(x)=(2.4xβˆ’2x)In24
∴fβ€²(4)fβ€²(2)=2.256βˆ’162.16βˆ’4
∴14fβ€²(4)fβ€²(2)=248

2. Let p and q be two real numbers such that p + q = 3 and p4 + q4 = 369. Then

(1p+1q)βˆ’2
is equal to _______.

Answer (4)

Sol. ∡ p + q = 3 …(i)

and p4 + q4 = 369 …(ii)

{(p + q)2 – 2pq}2 – 2p2q2 = 369

or (9 – 2pq)2 – 2(pq)2 = 369

or (pq)2 – 18pq – 144 = 0

∴ pq = –6 or 24

But pq = 24 is not possible

∴ pq = –6

Hence,

(1p+1q)βˆ’2=(pqp+q)2=(βˆ’2)2=4

3. If z2 + z + 1 = 0,

z∈C, then |βˆ‘n=115(zn+(βˆ’1)n1zn)2|
is equal to ________.

Answer (2)

Sol. ∡ z2 + z + 1 = 0 β‡’ Ο‰ or Ο‰2

∡|βˆ‘n=115(zn+(βˆ’1)n1zn)2|
=|βˆ‘n=115z2n+βˆ‘n=115zβˆ’2n+2.βˆ‘n=115(βˆ’1)n|

= |0 + 0 – 2|

= 2

4.

Let X=[010001000],
Y = Ξ±I + Ξ²X + Ξ³X2 and
Z=Ξ±2lβˆ’Ξ±Ξ²X+(Ξ²2βˆ’Ξ±Ξ³)X2,Ξ±,Ξ²,γ∈R.
If Yβˆ’1=[15βˆ’2515015βˆ’250015],
then (Ξ± – Ξ² + Ξ³)2 is equal to ___________.

Answer (100)

Sol.

∡X=[010001000]
∴X2=[001000000]
∴Y=αl+βX+γX2=[αβγ0αβ00α]

∡ Y Β· Y–1 = I

∴[Ξ±Ξ²Ξ³0Ξ±Ξ²00Ξ±][15βˆ’2515015βˆ’250015]=[100010001]
∴[Ξ±5Ξ²βˆ’2Ξ±5Ξ±βˆ’2Ξ²+Ξ³50Ξ±5Ξ²βˆ’2Ξ±500Ξ±5]=[000010001]

∴ α = 5, β = 10, γ = 15

∴ (Ξ± – Ξ² + Ξ³)2 = 100

5. The total number of 3-digit numbers, whose greatest common divisor with 36 is 2, is _______.

Answer (150)

Sol. ∡ x ∈ [100, 999], x ∈ N

Then

x2∈[50,499], x2∈N

Number whose G.C.D with 18 is 1 in this range have the required condition. There are 6 such number from 18 Γ— 3 to 18 Γ— 4. Similarly from 18 Γ— 4 to 18 Γ— 5….., 26 Γ— 18 to 27 Γ— 18

∴ Total numbers = 24 Γ— 6 + 6 = 150

The extra numbers are 53, 487, 491, 493, 497 and 499.

6. If

(40C0)+(41C1)+(42C2)+….+(60C20)mn 60C20
m and n are coprime, then m + n is equal to _____.

Answer (102)

Sol.

40C0+41C1+42C2+….+60C20
=40C40+41C40+42C40+….+60C40
=61C41
=6141.60C41

∴ m = 61, n = 41

∴ m + n = 102

7. If a1 (> 0), a2, a3, a4, a5 are in a G.P., a2 + a4 = 2a3 + 1 and 3a2 + a3 = 2a4, then a2 + a4 + 2a5 is equal to _______.

Answer (40)

Sol. Let G.P. be a1 = a, a2 = ar, a3 = ar2, ……

∡3a2+a3=2a4
β‡’3ar+ar2=2ar3
β‡’2ar2βˆ’rβˆ’3=0
∴r=βˆ’1or32
∡a1=a>0 then rβ‰ βˆ’1

Now,

a2+a4=2a3+1
ar+ar3=2ar2+1
a(32+278βˆ’92)=1
∴a=83
∴a2+a4+2a5=a(r+r3+2r4)
=83(32+278+818)

= 40

8. The integral

24Ο€βˆ«02(2βˆ’x2)dx(2+x2)4+x4
is equal to _______.

Answer (3)

Sol.

I=24Ο€βˆ«022βˆ’x2(2+x2)4+x4dx

Let

x=2t⇒dx=2dt
I=24Ο€βˆ«01(2βˆ’2t2).2dt(2+2t2)4+4t4
=122Ο€βˆ«01(1t2βˆ’1)dt(t+1t)(t+1t)2βˆ’2

Let

t+1t=u
β‡’(1βˆ’1t2)dt=du
=122Ο€βˆ«βˆž2βˆ’duu42βˆ’2
=122Ο€βˆ«2∞duu2βˆ’(2u)2
=122Ο€βˆ«120βˆ’12dp1βˆ’p2
=12Ο€[sinβˆ’1p]012
=12Ο€.Ο€4

= 3

9. Let a line L1 be tangent to the hyperbola

x216βˆ’y24=1
and let L2 be the line passing through the origin and perpendicular to L1. If the locus of the point of intersection of L1 and L2 is
(x2+y2)2=Ξ±x2+Ξ²y2,
then Ξ± + Ξ² is equal to___.

Answer (12)

Sol. Equation of L1 is

xsecΞΈ4βˆ’ytanΞΈ2=1…..(i)

Equation of line L2 is

x tanΞΈ2+y secΞΈ4=0…..(ii)

∡ Required point of intersection of L1 and L2 is (x1, y1) then

x1secΞΈ4βˆ’y1tanΞΈ2βˆ’1=0…..(iii)
and
y1secΞΈ4+x1tanΞΈ2=0…..(iv)

From equations (iii) and (iv)

secΞΈ=4x1x12+y12 and tanΞΈ=βˆ’2y1x12+y12

∴ Required locus of (x1, y1) is

(x2+y2)2=16x2βˆ’4y2
∴α=16,Ξ²=βˆ’4
∴α+β=12

10. If the probability that a randomly chosen 6-digit number formed by using digits 1 and 8 only is a multiple of 21 is p, then 96 p is equal to ________ .

Answer (33)

Sol. Total number of numbers from given

Condition = n(s) = 26.

Every required number is of the form

A=7.(10a1+10a2+10a3+….)+111111

Here 111111 is always divisible by 21.

∴ If A is divisible by 21 then

10a1+10a2+10a3+….
must be divisible by 3.

For this we have

6C0+6C3+6C6
cases are there

∴n(E)=6C0+6C3+6C6=22

∴ Required probability

=2226=p
∴1132=p

∴ 96p = 33

Download PDF of JEE Main 2022 June 26 Shift 2 Maths Paper & Solutions

ans and sol jee main 2022 phase 1 26 06 2022 e math final revised 1
ans and sol jee main 2022 phase 1 26 06 2022 e math final revised 2
ans and sol jee main 2022 phase 1 26 06 2022 e math final revised 3
ans and sol jee main 2022 phase 1 26 06 2022 e math final revised 4
ans and sol jee main 2022 phase 1 26 06 2022 e math final revised 5
ans and sol jee main 2022 phase 1 26 06 2022 e math final revised 6
ans and sol jee main 2022 phase 1 26 06 2022 e math final revised 7
ans and sol jee main 2022 phase 1 26 06 2022 e math final revised 8
ans and sol jee main 2022 phase 1 26 06 2022 e math final revised 9

JEE Main 2022 Paper Solutions – June 26th Shift 2

JEE Main 2022 June 26 Shift 2 Question Paper – Physics Solutions

2,112

JEE Main 2022 June 26 Shift 2 Question Paper – Chemistry Solutions

2,436

JEE Main 2022 June 26 Shift 2 Question Paper – Maths Solutions

3,518

Frequently Asked Questions – FAQs

Q1

What is the overall difficulty level of JEE Main June 26, 2022, Shift 2 Maths question paper?

The overall difficulty level of JEE Main 2022 June 26 Shift 2 Maths question paper is 1.86 out of 3.

Q2

How was the class-wise distribution of questions in the JEE Main 2022 June 26 Shift 2 Maths question paper?

There were 11 questions from Class 11 and 11 questions from Class 12 as per the memory-based questions in the JEE Main 2022 June 26 Shift 2 Maths question paper.

Q3

Was there any question from the Conic section in the JEE Main 2022 June 26 Shift 2 Maths question paper?

Yes. There was a question asked from the Conic section and it was an easy question.

Q4

How was the JEE Main 2022 June 26 Shift 2 Maths question paper?

The JEE Main 2022 June 26 Shift 2 Maths question paper was easy to moderate difficulty. There were 6 easy questions, 13 medium questions and 3 difficult questions as per the memory-based questions.

Q5

How many questions should the students attempt in the JEE Main 2022 June 26 Shift 2 Maths question paper?

There are total of 30 questions, of which 20 are from section A, and 10 are from section B. Students should attempt 25 questions in the JEE Main 2022 June 26 Shift 2 Maths question paper. They need to do only 5 out of 10 questions from section B.

Comments

Leave a Comment

Your Mobile number and Email id will not be published.

*

*