Mutual Inductance

Mutual inductance is the main operating principle of generators, motors, and transformers. Any electrical device having components that tend to interact with another magnetic field also follows the same principle. The interaction is usually brought about by a mutual induction where the current flowing in one coil generates a voltage in a secondary coil.

Table of Content

What Is Mutual Inductance?

When two coils are brought in proximity with each other the magnetic field in one of the coils tend to link with the other. This further leads to the generation of voltage in the second coil. This property of a coil which affects or changes the current and voltage in a secondary coil is called mutual inductance.

Mutual Inductance

Changing I1 produces changing magnetic flux in coil 2.

In the first coil of N1 turns, when a current I1 passes through it, magnetic field B is produced. As the two coils are closer to each other, few magnetic field lines will also pass through coil 2.

ϕ21{{\phi }_{21}}\to magnetic flux in one turn of coil 2 due to current I1.

If we vary the current with respect to time, then there will be an induced emf in coil 2.

εind=dϕdt{{\varepsilon }_{ind}}=-\frac{d\phi }{dt} [According to Faraday’s law] ε21=N2dϕ21dt{{\varepsilon }_{21}}=-{{N}_{2}}\frac{d{{\phi }_{21}}}{dt} ε21=N2ddt(B.A){{\varepsilon }_{21}}=-{{N}_{2}}\frac{d}{dt}\left( \overline{B}.\,\overline{A} \right)

The induced emf is coil 2 directly proportional to the current passes through the coil 1.

N2ϕ21I1{{N}_{2}}\,{{\phi }_{21}}\propto {{I}_{1}} N2ϕ21=M21I1{{N}_{2}}\,{{\phi }_{21}}={{M}_{21}}{{I}_{1}} … (1)

The constant of proportionality is called as mutual inductance. It can be written as

M21=N2ϕ21I1{{M}_{21}}=\frac{{{N}_{2}}{{\phi }_{21}}}{{{I}_{1}}} … (2)

The SI unit of inductance is henry (H)

1H=1(Tesla).1(m2)1A1H=\frac{1(\text{Tesla}).1\left( {{m}^{2}} \right)}{1\,\,A}

In a similar manner, the current in coil 2, I2 can produce an induced emf in coil 1 when I2 is varying with respect to time. Then,

ε12=N1dϕ12dt{{\varepsilon }_{12}}=-{{N}_{1}}\frac{d{{\phi }_{12}}}{dt} N1ϕ12I2{{N}_{1}}{{\phi }_{12}}\propto {{I}_{2}} N1ϕ12=M12I2{{N}_{1}}{{\phi }_{12}}={{M}_{12}}{{I}_{2}} … (3)

M12=N1ϕ12I2{{M}_{12}}=\frac{{{N}_{1}}{{\phi }_{12}}}{{{I}_{2}}} … (4)

This constant of proportionality is another mutual inductance.

Constant of proportionality

Changing I2 produces changing magnetic flux in coil 1.

Reciprocity Theorem

Experiments and calculations that combine Ampere’s law and Biot-Savart law confirm that the two constants, M21 and M12 are equal in the absence of material medium between the two coils.

M12 = M21 … (5)

This property is called reciprocity and by using reciprocity theorem, we can simply write the mutual inductance between two coils as;

M12=M21M{{\text{M}}_{12}}\text{=}\,{{\text{M}}_{21}}\equiv \text{M}

EMF of Mutual Inductance

Considering the mutual inductance between two coil we just discussed, we defined mutual inductance M21 of coil 2 with respect to 1 as,

M21=N2ϕ21I1{{\text{M}}_{21}}\text{=}\,\frac{{{N}_{2}}{{\phi }_{21}}}{{{I}_{1}}} M21I1=N2ϕ21{{\text{M}}_{21}}{{I}_{1}}={{N}_{2}}{{\phi }_{21}}

If I1 changes with time,

M21dI1dt=N2dϕ21dt{{M}_{21}}\frac{d{{I}_{1}}}{dt}={{N}_{2}}\frac{d{{\phi }_{21}}}{dt} … (6)

According to Faraday’s law of induction,

εind=dϕdt{{\varepsilon }_{ind}}=-\frac{d\phi }{dt}

We can write (6) as,

M2dI1dt=ε21{{M}_{2}}\frac{d{{I}_{1}}}{dt}=-{{\varepsilon }_{21}}

Thus induced emf in coil 2 due to current in coil 1 is given by

ε2=M21dI1dt{{\varepsilon }_{2}}=-{{M}_{21}}\frac{d{{I}_{1}}}{dt} … (7)

Similarly, induced emf in coil 1 due to changing current in coil 2 can be given as,

ε1=M12dI2dt{{\varepsilon }_{1}}=-{{M}_{12}}\frac{d{{I}_{2}}}{dt} … (8)

From experiments (equation (5)),

M21 = M12 = M

Therefore ε1=MdI2dtε2=MdI1dt{{\varepsilon }_{1}}=-M\frac{d{{I}_{2}}}{dt}\,\,\,\,\,\,{{\varepsilon }_{2}}=-M\frac{d{{I}_{1}}}{dt}

The coefficient of mutual induction – mutual inductance depends only on the geometrical factor of the two coils such as the number of turns, radii of two coils and on the properties of a material medium such as magnetic permeability of the medium surrounding the coils.

Also Read: Electromagnetic Induction

How To Find Mutual Inductance?

Steps for finding mutual inductance (M).

(i) Assume current in one of the coils (say I1 in coil 1)

(ii) Deduce the expression for the magnetic field in the neighbouring coil (2) due to I1.

(iii) Write the flux linkage equation.

N2ϕ2=MI1{{N}_{2}}{{\phi }_{2}}=M{{I}_{1}}

(iv) Obtain the magnetic flux linked,

N2(ϕ2)=N2(B1.A2){{N}_{2}}\left( {{\phi }_{2}} \right)={{N}_{2}}\left( {{B}_{1}}.\,{{A}_{2}} \right)

(v) Compare the above two equations and find mutual inductance, M.

Mutual Inductance Problems

(1) Mutual induction between circular coils.

Mutual induction between circular coils

Consider two circular coils (closely packed) coaxially placed to each other. The coil with a larger radius has N1 turns and that with smaller radius has N2 turns. Also, assume that R1>> R2.

The above-mentioned calculation is the same for the following case as well.

  • Mutual inductance of two concentric coplanar loops.

Mutual inductance of two concentric coplanar loops

  • Mutual induction between two solenoids.

Mutual Inductance of a Coaxial Solenoid

Mutual Inductance of a Coaxial Solenoid

Consider two coaxial solenoids of which the outer solenoid S2 has radius r2 and N2 turns whereas the inner solenoid S1 has radius r1 and N1 turns. Both the solenoids are of equal length.

When there is a current I2 in the solenoid S2, the magnetic induction due to I2 is given by,

B2=μ0n2I2=μ0N2lI2.{{B}_{2}}={{\mu }_{0}}{{n}_{2}}{{I}_{2}}={{\mu }_{0}}\frac{{{N}_{2}}}{l}{{I}_{2}}.

The corresponding flux linkage with solenoid S1 is,

N1ϕ12=N1B2.A1{{N}_{1}}{{\phi }_{12}}={{N}_{1}}{{B}_{2}}.\,{{A}_{1}} N1ϕ12=N1μ0N2lI2.πr12{{N}_{1}}{{\phi }_{12}}={{N}_{1}}{{\mu }_{0}}\frac{{{N}_{2}}}{l}{{I}_{2}}.\,\pi r_{1}^{2} … (11)

Also, N1ϕ1=M12I2{{N}_{1}}{{\phi }_{1}}={{M}_{12}}{{I}_{2}} … (12)

On comparing (11) and (12),

M12=μ0N1N2πr12l{{M}_{12}}=\frac{{{\mu }_{0}}{{N}_{1}}{{N}_{2}}\pi \,\,r_{1}^{2}}{l}

Similarly when a current I1 is set up through S1, then the magnetic flux linked in S2 is given by,

N2ϕ21=M21I1{{N}_{2}}{{\phi }_{21}}={{M}_{21}}{{I}_{1}} … (13)

Note that the magnetic flux due to current I1 in S1 is assumed to be confined only inside the solenoid S1. Also the solenoids are very long compared to their radii, the flux linkage in S2 is

N2ϕ21=N2(B1.A1){{N}_{2}}{{\phi }_{21}}={{N}_{2}}\left( {{B}_{1}}\,.\,\,{{A}_{1}} \right) → (Area confined within S1.)

N2ϕ21=N2μ0N1l.I1.πr12{{N}_{2}}{{\phi }_{21}}={{N}_{2}}{{\mu }_{0}}\frac{{{N}_{1}}}{l}.\,{{I}_{1}}\,.\,\,\pi \,r_{1}^{2} … (14)

From (13) and (14),

M21=μ0N1N2lπr12=M12=M{{M}_{21}}={{\mu }_{0}}\frac{{{N}_{1}}{{N}_{2}}}{l}\,\pi \,\,r_{1}^{2}={{M}_{12}}=M

Example Problem: Calculate the mutual inductance between a solenoid of length l and cross-sectional area A with N1 turns and a circular coil of N2 turns that is wound at the centre of the solenoid.

Mutual inductance between a solenoid

Solution: 

(i) Assume current I1 in the solenoid. The magnetic field B at its centre is given by

B=μ0ni=μ0N1lI1B={{\mu }_{0}}n\,i={{\mu }_{0}}\frac{{{N}_{1}}}{l}{{I}_{1}}

(ii) Magnetic flux linked with the small coil of area A is due to magnetic field B, then,

N2ϕ21=N2(B.A){{N}_{2}}{{\phi }_{21}}={{N}_{2}}\left( B.\,A \right) N2ϕ21=N2.μ0N1lI1.A{{N}_{2}}{{\phi }_{21}}={{N}_{2}}.\,{{\mu}_{0}}\frac{{{N}_{1}}}{l}{{I}_{1}}\,\,.\,\,A … (a)

(iii) N2ϕ21=MI1{{N}_{2}}{{\phi }_{21}}=M\,\,{{I}_{1}} … (b)

Equating (a) and (b),

M=μ0N1N2lAM={{\mu }_{0}}\frac{{{N}_{1}}{{N}_{2}}}{l}A

Applications of Mutual Inductance

The principle of mutual inductance is followed in various electronic devices. Some of them are as follows;

Motors

Mutual Inductance in Motors

Note the inductors (Lf and La) in the dc motor circuit that are mutually inducted.

Transformer

Transformer

Also Read: Transformer

Generators

The induced EMG in a generator by electromagnetic induction is shown below. The direction of induced emf is given by Lenz law.

Mutual Inductance in Generator

When an electrical component (coil) is interacting or being influenced by the magnetic field in the neighbouring component, mutual inductance arises. The current flowing in one coil induces an emf in the neighbouring coil.

Solved Problems:

1. Two circular coils can be arranged in any of the three situations in the figure.

Two circular coils

The mutual inductance will be

(a) maximum in the situation (C)

(b) maximum in the situation (B)

(c) maximum in the situation (A)

(d) Same in all situations

Solution:

The mutual inductance will be maximum when maximum field lines due to one coil pass through the other. In such a situation, magnetic flux linked will be maximum.

Therefore, in situation A both coils are parallel to each other. Hence more flux will be linked. Hence mutual inductance will be larger.

2. Two coaxial coils are very closer to each other and their mutual inductance is 5mH. If a current (50 A)sin 500t is passed in one of the coils, then find the peak value of induced emf in the secondary coil.

(a) 50V (b) 500V (c) 125V (d) 250V

Solution:

Given:

i=50sin500ti=50\,\sin 500t

emf of mutual induction is given by

ε=Mdidt\varepsilon =-M\frac{di}{dt} =(5×103)ddt(50sin500t)=-\left( 5\times {{10}^{-3}} \right)\frac{d}{dt}\left( 50\sin 500t \right) =5×103×50cos500t×500=-5\times {{10}^{-3}}\times 50\cos 500t\times 500 ε=125cos500t\varepsilon =-125\cos 500t

The peak value is 125V. Option c is correct.

Frequently Asked Questions On Mutual Inductance

What is the induced emf in a stationary circular coil kept in a uniform magnetic field?

As the coil is stationary in a uniform magnetic field, there is no change in magnetic flux generated. Hence there is no induced emf in the coil.

Explain how mutual inductance between a pair of circular coil changes when a sheet of iron is placed in between the coils. Assume all the other factors remain constant.

We know that the mutual inductance depends (directly proportional) on the permeability of the medium surrounding the coils. When the permeability of the medium is increased by inserting a sheet of iron, then the mutual inductance between the coils also increased.

When two spherical balls, one made up of copper and the other made up of glass is allowed to fall freely under gravity from the same height above the ground. Which one of the balls will reach the ground fast? Why?

Having known that acceleration due to gravity does not depend on the mass the falling objects, the glass ball will reach the ground first. Because being an insulator, glass is not affected by the earth’s magnetic field. Hence there is no induced emf in the glass ball. Whereas in a copper ball the induced emf by earth’s magnetic field will oppose the change that produced it. Thus falls slower.

What are the factors that affect mutual inductance?

Mutual inductance between two coils is affected by;
-Area of cross-section
-Number of turns in each coil
-Space between the two coils
-Permeability of medium between the two coils
-Length (in case of the solenoid)