Mutual inductance is the main operating principle of generators, motors, and transformers. Any electrical device having components that tend to interact with another magnetic field also follows the same principle. The interaction is usually brought about by a mutual induction where the current flowing in one coil generates a voltage in a secondary coil.

### Table of Content

- What Is Mutual Inductance?
- Reciprocity Theorem
- EMF of Mutual Inductance
- How To Find Mutual Inductance?
- Mutual Inductance of a Coaxial Solenoid
- Applications of Mutual Inductance
- Frequently Asked Questions

## What Is Mutual Inductance?

When two coils are brought in proximity with each other the magnetic field in one of the coils tend to link with the other. This further leads to the generation of voltage in the second coil. This property of a coil which affects or changes the current and voltage in a secondary coil is called mutual inductance.

Changing I_{1} produces changing magnetic flux in coil 2.

In the first coil of N_{1} turns, when a current I_{1} passes through it, magnetic field B is produced. As the two coils are closer to each other, few magnetic field lines will also pass through coil 2.

_{1}.

If we vary the current with respect to time, then there will be an induced emf in coil 2.

[latex]{{\varepsilon }_{ind}}=-\frac{d\phi }{dt}[/latex] [According to Faraday’s law][latex]{{\varepsilon }_{21}}=-{{N}_{2}}\frac{d{{\phi }_{21}}}{dt}[/latex]

[latex]{{\varepsilon }_{21}}=-{{N}_{2}}\frac{d}{dt}\left( \overline{B}.\,\overline{A} \right)[/latex]

The induced emf in coil 2 directly proportional to the current passes through the coil 1.

[latex]{{N}_{2}}\,{{\phi }_{21}}\propto {{I}_{1}}[/latex]

[latex]{{N}_{2}}\,{{\phi }_{21}}={{M}_{21}}{{I}_{1}}[/latex] … (1)

The constant of proportionality is called as mutual inductance. It can be written as

[latex]{{M}_{21}}=\frac{{{N}_{2}}{{\phi }_{21}}}{{{I}_{1}}}[/latex] … (2)The SI unit of inductance is henry (H)

[latex]1H=\frac{1(\text{Tesla}).1\left( {{m}^{2}} \right)}{1\,\,A}[/latex]In a similar manner, the current in coil 2, I_{2} can produce an induced emf in coil 1 when I_{2} is varying with respect to time. Then,

[latex]{{N}_{1}}{{\phi }_{12}}\propto {{I}_{2}}[/latex]

[latex]{{N}_{1}}{{\phi }_{12}}={{M}_{12}}{{I}_{2}}[/latex] … (3)

[latex]{{M}_{12}}=\frac{{{N}_{1}}{{\phi }_{12}}}{{{I}_{2}}}[/latex] … (4)

This constant of proportionality is another mutual inductance.

Changing I_{2} produces changing magnetic flux in coil 1.

## Reciprocity Theorem

Experiments and calculations that combine Ampere’s law and Biot-Savart law confirm that the two constants, M_{21} and M_{12} are equal in the absence of material medium between the two coils.

M_{12} = M_{21} … (5)

This property is called reciprocity and by using reciprocity theorem, we can simply write the mutual inductance between two coils as;

[latex]{{\text{M}}_{12}}\text{=}\,{{\text{M}}_{21}}\equiv \text{M}[/latex]## EMF of Mutual Inductance

Considering the mutual inductance between two coil we just discussed, we defined mutual inductance M_{21} of coil 2 with respect to 1 as,

[latex]{{\text{M}}_{21}}{{I}_{1}}={{N}_{2}}{{\phi }_{21}}[/latex]

If I_{1} changes with time,

According to Faraday’s law of induction,

[latex]{{\varepsilon }_{ind}}=-\frac{d\phi }{dt}[/latex]Thus induced emf in coil 2 due to current in coil 1 is given by

[latex]{{\varepsilon }_{2}}=-{{M}_{21}}\frac{d{{I}_{1}}}{dt}[/latex] … (7)Similarly, induced emf in coil 1 due to changing current in coil 2 can be given as,

[latex]{{\varepsilon }_{1}}=-{{M}_{12}}\frac{d{{I}_{2}}}{dt}[/latex] … (8)From experiments (equation (5)),

M_{21} = M_{12} = M

Therefore [latex]{{\varepsilon }_{1}}=-M\frac{d{{I}_{2}}}{dt}\,\,\,\,\,\,{{\varepsilon }_{2}}=-M\frac{d{{I}_{1}}}{dt}[/latex]

The coefficient of mutual induction – mutual inductance depends only on the geometrical factor of the two coils such as the number of turns, radii of two coils and on the properties of a material medium such as magnetic permeability of the medium surrounding the coils.

**Also Read:** Electromagnetic Induction

## How To Find Mutual Inductance?

Steps for finding mutual inductance (M).

(i) Assume current in one of the coils (say I_{1} in coil 1)

(ii) Deduce the expression for the magnetic field in the neighbouring coil (2) due to I_{1}.

(iii) Write the flux linkage equation.

[latex]{{N}_{2}}{{\phi }_{2}}=M{{I}_{1}}[/latex] ———-(8)(iv) Obtain the magnetic flux linked,

[latex]{{N}_{2}}\left( {{\phi }_{2}} \right)={{N}_{2}}\left( {{B}_{1}}.\,{{A}_{2}} \right)[/latex] ———(9)(v) Compare the above two equations and find mutual inductance, M.

### Mutual Inductance Problems

(1) Mutual induction between circular coils.

Consider two circular coils (closely packed) coaxially placed to each other. The coil with a larger radius has N_{1} turns and that with smaller radius has N_{2} turns. Also, assume that R_{1}>> R_{2}.

The above-mentioned calculation is the same for the following case as well.

- Mutual inductance of two concentric coplanar loops.

- Mutual induction between two solenoids.

## Mutual Inductance of a Coaxial Solenoid

Consider two coaxial solenoids of which the outer solenoid S_{2} has radius r_{2} and N_{2} turns whereas the inner solenoid S_{1} has radius r_{1} and N_{1} turns. Both the solenoids are of equal length.

When there is a current I_{2} in the solenoid S_{2}, the magnetic induction due to I_{2} is given by,

The corresponding flux linkage with solenoid S_{1} is,

[latex]{{N}_{1}}{{\phi }_{12}}={{N}_{1}}{{\mu }_{0}}\frac{{{N}_{2}}}{l}{{I}_{2}}.\,\pi r_{1}^{2}[/latex] … (11)

Also, [latex]{{N}_{1}}{{\phi }_{12}}={{M}_{12}}{{I}_{2}}[/latex] … (12)

On comparing (11) and (12),

[latex]{{M}_{12}}=\frac{{{\mu }_{0}}{{N}_{1}}{{N}_{2}}\pi \,\,r_{1}^{2}}{l}[/latex]Similarly when a current I_{1} is set up through S_{1}, then the magnetic flux linked in S_{2} is given by,

Note that the magnetic flux due to current I_{1} in S_{1} is assumed to be confined only inside the solenoid S_{1}. Also the solenoids are very long compared to their radii, the flux linkage in S_{2} is

_{1}.)

[latex]{{N}_{2}}{{\phi }_{21}}={{N}_{2}}{{\mu }_{0}}\frac{{{N}_{1}}}{l}.\,{{I}_{1}}\,.\,\,\pi \,r_{1}^{2}[/latex] … (14)

From (13) and (14),

[latex]{{M}_{21}}={{\mu }_{0}}\frac{{{N}_{1}}{{N}_{2}}}{l}\,\pi \,\,r_{1}^{2}={{M}_{12}}=M[/latex]**Example Problem:** Calculate the mutual inductance between a solenoid of length l and cross-sectional area A with N_{1} turns and a circular coil of N_{2} turns that is wound at the centre of the solenoid.

**Solution: **

(i) Assume current I_{1} in the solenoid. The magnetic field B at its centre is given by

(ii) Magnetic flux linked with the small coil of area A is due to magnetic field B, then,

[latex]{{N}_{2}}{{\phi }_{21}}={{N}_{2}}\left( B.\,A \right)[/latex][latex]{{N}_{2}}{{\phi }_{21}}={{N}_{2}}.\,{{\mu}_{0}}\frac{{{N}_{1}}}{l}{{I}_{1}}\,\,.\,\,A[/latex] … (a)

(iii) [latex]{{N}_{2}}{{\phi }_{21}}=M\,\,{{I}_{1}}[/latex] … (b)

Equating (a) and (b),

[latex]M={{\mu }_{0}}\frac{{{N}_{1}}{{N}_{2}}}{l}A[/latex]## Applications of Mutual Inductance

The principle of mutual inductance is followed in various electronic devices. Some of them are as follows;

### Motors

Note the inductors (L_{f} and L_{a}) in the dc motor circuit that are mutually inducted.

### Transformer

**Also Read:** Transformer

### Generators

The induced EMG in a generator by electromagnetic induction is shown below. The direction of induced emf is given by Lenz law.

When an electrical component (coil) is interacting or being influenced by the magnetic field in the neighbouring component, mutual inductance arises. The current flowing in one coil induces an emf in the neighbouring coil.

**Solved Problems:**

**1. Two circular coils can be arranged in any of the three situations in the figure.**

**The mutual inductance will be**

**(a) maximum in the situation (C)**

**(b) maximum in the situation (B)**

**(c) maximum in the situation (A)**

**(d) Same in all situations**

**Solution:**

The mutual inductance will be maximum when maximum field lines due to one coil pass through the other. In such a situation, magnetic flux linked will be maximum.

Therefore, in situation A both coils are parallel to each other. Hence more flux will be linked. Hence mutual inductance will be larger.

**2. Two coaxial coils are very closer to each other and their mutual inductance is 5mH. If a current (50 A)sin 500t is passed in one of the coils, then find the peak value of induced emf in the secondary coil.**

(a) 50V (b) 500V (c) 125V (d) 250V

**Solution:**

Given:

[latex]i=50\,\sin 500t[/latex]emf of mutual induction is given by

[latex]\varepsilon =-M\frac{di}{dt}[/latex][latex]=-\left( 5\times {{10}^{-3}} \right)\frac{d}{dt}\left( 50\sin 500t \right)[/latex]

[latex]=-5\times {{10}^{-3}}\times 50\cos 500t\times 500[/latex]

[latex]\varepsilon =-125\cos 500t[/latex]

The peak value is 125V. Option c is correct.

## Frequently Asked Questions On Mutual Inductance

### What is the induced emf in a stationary circular coil kept in a uniform magnetic field?

As the coil is stationary in a uniform magnetic field, there is no change in magnetic flux generated. Hence there is no induced emf in the coil.

### Explain how mutual inductance between a pair of circular coil changes when a sheet of iron is placed in between the coils. Assume all the other factors remain constant.

We know that the mutual inductance depends (directly proportional) on the permeability of the medium surrounding the coils. When the permeability of the medium is increased by inserting a sheet of iron, then the mutual inductance between the coils also increased.

### When two spherical balls, one made up of copper and the other made up of glass is allowed to fall freely under gravity from the same height above the ground. Which one of the balls will reach the ground fast? Why?

Having known that acceleration due to gravity does not depend on the mass of the falling objects, the glass ball will reach the ground first. Because being an insulator, glass is not affected by the earth’s magnetic field. Hence there is no induced emf in the glass ball. Whereas in a copper ball, emf induced by the earth’s magnetic field will affect the fall of the ball. Thus falls slower.

### What are the factors that affect mutual inductance?

Mutual inductance between two coils is affected by;

-Area of cross-section

-Number of turns in each coil

-Space between the two coils

-Permeability of medium between the two coils

-Length (in case of the solenoid)