Alkyl Halide

What are Alkyl Halides?

Alkyl halides also called haloalkanes or halogenoalkanes are chemical compounds that are often derived from alkanes that contain one or more halogens. We can also say that alkyl halides are a subset of the general class of halocarbons.

Alkyl halide or haloalkanes are formed by the replacement of hydrogen atoms in an aliphatic hydrocarbon by halogen atoms (Fluorine, chlorine, bromine or iodine). They can also be manufactured from any organic precursors such as alkanes, alkenes, or alcohols and carboxylic acids. Generally, alkyl halides contain hydrogen atoms attached to the sp3 hybridized carbon atom of alkyl groups.

Some of the examples of Alkyl halide include;

Alkyl halide

Classification Of Alkyl Halide

Alkyl Halide can be classified on the basis of various aspects. They are as follows.

Number of Halogen Atoms

Here, the classification mainly depends on whether they contain one, two, or more halogen atoms in their structure. Under this category we have;

1. Mono Haloalkane

Example: CH3-CH2-X [Where X can be Cl, F, Br or I]

2. Dihaloalkane

Example: X-CH2-CH2-X [Where X can be Cl, F, Br or I]

3. Trihaloalkane

Example: X-CH2-CHX-CH2-X [Where X can be Cl, F, Br or I]

The Position of Halogen atom Along the Chain of Carbon Atom

The classification depends on how the halogen atom is positioned on the chain of carbon atoms.

  1. Primary alkyl halide
  2. Secondary alkyl halide
  3. Tertiary alkyl halide

Primary Alkyl Halide

In this type of haloalkanes, the carbon which is bonded to the halogen family will be only attached to one other alkyl group. It doesn’t matter how much bulky group is attached to it.

Some examples of primary haloalkanes are,

Primary Alkyl Halide

Secondary Alkyl Halide

In this type of haloalkanes, the carbon atom which is bonded with the halogen atom is joined directly to the other two alkyl groups which can be same or different. Some of the examples are:

Secondary Alkyl Halide

Tertiary Alkyl Halide

In this type of haloalkanes, the carbon atom which carries the halogen atom is directly bonded to three alkyl group. This alkyl group maybe with a combination of the same or different. Some examples are,

Tertiary Alkyl Halide

Alkyl Halide Properties

Alkyl halides are colourless when they exist in pure form. But, bromides and iodides develop colour when exposed to light. Many volatile halogen compounds have a sweet smell.

Boiling and Melting Points

  • Methyl chloride, methyl bromide, ethyl chloride and some chlorofluoromethanes are in the form of gas at room temperature.
  • Higher members are liquids or solids.
  • As we know, molecules of organic halogen compounds are polar in nature.
  • Due to greater polarity and greater molar mass as compared to parent hydrocarbon, the intermolecular force of attraction is stronger in halogen derivatives.
  • So, the boiling points of chlorides, bromides and iodides are considerably higher than that of the hydrocarbon with the same molecular mass.
  • The attraction gets stronger as the size and number of electrons increases.
  • The boiling points of alkyl halides will decrease in the order RI > RBr > RCl > RF.

Density

  • Bromo-derivatives, iodo-derivatives and polychloro derivatives of hydrocarbons are heavier than water.
  • The density increases with an increase in the number of carbon atoms, halogen atoms and atomic mass of halogen atoms.

Solubility

  • The haloalkanes are less soluble in water.
  • To dissolve haloalkanes in water, energy is required to overcome the attractions between the haloalkane molecule and break the hydrogen bonds between the water molecules for haloalkanes to dissolve in water.
  • Very less amount of energy is released when new attractions between the haloalkanes and the water molecules are formed. Which is not as strong as the original hydrogen bonds in water.
  • So, the solubility of haloalkanes in water is less.
  • But, the haloalkanes will dissolve in the organic solvent than in the water. Because of this, the complex interaction between the haloalkanes and the creative molecules has the same potential as those broken by the unique and molecular haloalkanes.

Chemical Reactions

The chemical reaction of haloalkanes can be divided into three categories:

  1. Nucleophilic substitution reaction
  2. Elimination reaction
  3. Reaction with metals

Nucleophilic Substitution Reaction

In this type of reaction, a nucleophile reacts with haloalkane which is having a partial positive charge on the carbon atom which is bonded to halogen. A substitution reaction takes place and halogen atom called leaving group leaves as halide ion. Since the substitution reaction is initiated by a nucleophile, it is called nucleophilic substitution reaction.

Example:

Nucleophilic Substitution Reaction

It is one of the most useful classes of organic reactions of an alkyl halide in which halogen is bonded to sp3 hybridized carbon.

Elimination Reaction

When a haloalkane having – hydrogen atom is heated with alcoholic solution of potassium hydroxide, it will lead to the elimination of hydrogen atom from β – carbon atom and a halogen atom from the α – carbon atom. As a result, an alkene is formed as one of the products. Since β – hydrogen atom is involved in elimination, it is often called β – elimination reaction.

Elimination Reaction

If there is any possibility of formation of more than one alkene due to the presence of more than one β – hydrogen atoms, usually one alkene is formed as the main product.

Reaction With Metals

Most organic chlorides, bromides and iodides react with certain metals to give compounds containing carbon-metal bonds. Such compounds are known as organometallic compounds. The product formed by the reaction of haloalkanes with magnesium metal in dry ether.

Meanwhile, Grignard reagents tend to react actively and can react with any source of protons leading to the formation of hydrocarbons. It is therefore essential to avoid Grignard reagent. Otherwise, this will be considered as one of the modifications to hydrocarbons.

Synthesis of Alkyl Halides

Synthesis of Alkylhalides

Also Read: Preparation of Alkyl Halides

Uses of Alkyl Halide

  • Many organic compounds containing halogens occur in nature and some of these are clinically useful.
  • These classes of compounds find good applications in industry as well as in day to day life.
  • They are used as solvents for relatively non-polar compounds and as starting materials for the synthesis of a wide range of organic compounds.
  • Chlorine containing antibiotic, chloramphenicol, produced by soil microorganisms is very effective for the treatment of typhoid fever.
  • Some of the fully fluorinated compounds are being considered as potential blood substitutes in surgery.
  • They are used as synthon equivalents in organic synthesis.
  • Previously used as refrigerants and propellants.
  • They are also used in fire extinguishers