Determinant is a scalar value that can be calculated from the elements of a square matrix. It is an arrangement of numbers in the form ∣∣∣∣∣acbd∣∣∣∣∣ . Determinant for a 3×3 matrix is determined by ∣∣∣∣∣∣∣a1a2a3b1b2b3c1c2c3∣∣∣∣∣∣∣ = a1(b2c3-b3c2)-b1(a2c3-a3c2)+c1(a2b3-a3b2). In this article, we come across properties and multiplication of determinants.
Mathematicians defined the symbol ∣∣∣∣∣a1a2b1b2∣∣∣∣∣ as a determinant of order 2 and the four numbers arranged in row and column were called its elements. If we write the coefficients of the equations in the following form ∣∣∣∣∣acbd∣∣∣∣∣ then such an arrangement is called a determinant. In a determinant, horizontal lines are known as rows and vertical lines are known as columns. The shape of every determinant is a square. If a determinant is of order n then it contains n rows and n columns.
E.g. ∣∣∣∣∣a1a2b1b2∣∣∣∣∣,∣∣∣∣∣∣∣a1a2a3b1b2b3c1c2c3∣∣∣∣∣∣∣ are determinants of second and third order respectively.
For every square matrix A of order m x n, there exists a number associated with it called the determinant of a square matrix.
For a matrix of 1 x 1, the determinant is A = [a].
For a 2 x 2 matrix, A=∣∣∣∣∣acbd∣∣∣∣∣
the determinant is ad – bc.
In the case of a 3 x 3 matrix A=⎣⎢⎡adgbehcfi⎦⎥⎤, the value of determinant is = a (ei − fh) − b (di − fg) + c (dh − eg).
Note:
(i) The number of elements in a determinant of order n is n2.
(ii) A determinant of order 1 is the number itself.
Properties of Determinants
There will be no change in the value of determinant if the rows and columns are interchanged.
Suppose any two rows or columns of a determinant are interchanged, then its sign changes.
If any two rows or columns of a determinant are the same, then the determinant is 0.
If any row or column of the determinant is multiplied by a variable k, then its value is multiplied by k.
Say if some or all elements of a row or column are expressed as the sum of two or more terms, then the determinant can be expressed as the sum of two or more determinants.
(i) The two determinants to be multiplied must be of the same order.
(ii) To get the Tmn (term in the mth row nth column) in the product, Take the mth row of the 1st determinant and multiply it by the corresponding terms of the nth column of the 2nd determinant and add.
(iii) This method is the row by column multiplication rule for the product of 2 determinants of the nth order determinant.
(iv) IfΔ′ is the determinant formed by replacing the elements of a Δ of order n by their corresponding co-factors then Δ‘=Δn−1.(Δ‘) is called the reciprocal determinant).
Illustration 3: Reduce the power of the determinant ∣∣∣∣∣∣∣0cbc0aba0∣∣∣∣∣∣∣2
to 1.
Solution:
By multiplying the given determinant two times we get the determinant as required.