pH Scale and Acidity

Table of Content:

Introduction to pH Scale

Acid solutions have protons and basic solutions have hydroxide ions.

Concentrations of the ions are low (negative power of ten). pH scale is a convenient way of expressing these low concentrations in simple numbers between 1 and 14.

pH is the negative logarithm to the base ten of hydrogen ion concentration in moles per litre.

pH = – log [H+]

p(OH) is the negative logarithm to the base ten of hydroxide ion concentration in moles per litre.

p(OH) = – log [OH]

In aqueous solutions, pH + p(OH) = 14.

pH scale is based on neutral water, where [H+] = [OH] = 10-7

For a neutral solution pH = = – log [H+] = – log [10-7] = +7

pH of strong acid decreases with a limit of 1 and pH of a base increases up to 14

Generally, acids and bases will have a pH between.

But negative and greater than14 pH values are also possible.

Limitations of pH Scale

  1. pH values does not reflect directly the relative strength of acid or bases.

A solution of pH = 1 has a hydrogen ion concentration 100 times that of a solution of pH = 3 (not three times). A 4 x 10-5 N HCI is twice concentrated of a 2 x 10-5 N HCI solution, but the pH values of these solutions are 4.40 and 4.70 (not double).

  1. pH value is zero for 1N solution of strong acid. Concentration of 2 N, 3 N, 10 N, etc. gives negative pH values..
  2. A solution of an acid having very low concentration, say 10-8 N, shows a pH 8and hence should be basic, but actual pH value is less than 7.

Periodic Variation of Acidic and Basic Properties

(a)  Hydracids of the Elements of the Same Periods

Along the period acidic strength increases.. Hydrides become increasingly acidic from CH4, NH3, H2O and HF. The increase in acidic properties is due to the fact that the stability of their conjugate bases increases in the order

CH3< NH2  < OH– < F

(b)  Hydracids of the Elements of the Same Group

  1. Acidic nature increases down the column. Hydrides of V group elements (NH3, PH3, AsH3, SbH3, BiH3) show basic character which decreases due to increase in size and decrease in electronegativity from N to Bi. There is a decrease in electron density in, sp-hybrid orbital and thus electron donor capacity decreases.
  2. Hydracids of VI group elements (H20, H2S, H2Se, H2Te) act as weak acids. The strength increases in the order H20 < H2S < H2Se < H2Te. The increasing acidic properties reflects decreasing trend in the electron donor capacity of OH, HS, HSe or HTe ions.
  3. Hydracids of VII group elements (HF, HCI, HBr, HI) show acidic properties which increase from HF to HI. This is explained by the fact that bond energies decrease.

(H-F = 135 kcal/mol, HCI = 103, HBr = 88 and HI = 71 kcal/mol).

Oxyacids

The acidic properties of oxyacids of the same element which is in different oxidation states increase with an increase in oxidation number.

+ 1            +3          +5            +7

HCIO  <  HC1O2   <   HC1O3   <  HCIO4

+4            +6         +3            +5

H2SO3  <   H2SO4;    HNO2     <  HNO3

But this rule fails in oxyacids of phosphorus.

H3PO2  >  H3PO3  >  H3PO4

The acidic properties of the oxyacids of different elements which are in the same oxidation state decreases as the atomic number increases. This is due to increase in size and decrease in electronegativity.

HC1O4 > HBrO4 > HIO4

H2SO3  > H2SeO3

But there are a number of acid-base reactions in which no proton transfer takes place, e.g.,

SO+ SO2  ↔  SO2+ +  S

Acid1  Base2    Acid2   Base1

Thus, the protonic definition cannot be used to explain the reactions occurring in non-protonic solvents such as COCl2, S02, N2O4, etc.

Water – Amphoteric Weak Electrolyte

1) Water can behave like acid or a base. So it is amphoteric.

chemical equation Water accepts proton from HCl and acts as a base.

Water gives proton to ammonia and can be an acid \(NH_3(aq)+H_2O(l)\rightleftharpoons NH_{4}^{+}(aq)+OH^{-}\)

Molarity of water

Molarity = Number of moles per litre of solution = = 55.55 mole l-1

Ionization constant of water

\(H_2O\rightleftharpoons H_{4}^{+}+OH^{-}\)

Ka = Kb = \(\frac{[H+[OH-]]}{[H_2O]}\) = \(\frac{10^{-7}\times 10^{-7}}{55.55}=1.8\times10^{-16}\)

Where, Ka is the acid ionization constant and Kb is the base ionization constant.

pKa = pKb = – log[Ka] = \(-\log 1.8\times10^{-16}\) = 15.74

Degree of ionization of water

\(H_2O\rightleftharpoons H^{+}+OH^{-}\)

Initial concentration moles 55.55 0 0

At equilibrium moles 10-7 10-7

Degree of ionization = α =\(\frac{number\;of\;moles\;ionized}{initial\;number\;of\;moles}\) \(=\frac{10^{-7}}{55.55}=1.8\times 10^{-9}\)

Only about 2 parts per billion (ppb) of the water molecules dissociate into ions at room temperature. 

Ionic product of water

It is the product of the concentrations of hydrogen and hydroxide ions in water.

Ionic product of water = Kw = [H+][OH] = 10-14

pKw = – log[Kw] = – log10-14= 14

Ionic product, pKw, pKa and pKb remains the same whether the solution is acidic, neutral or

basic.

Leave a Comment

Your email address will not be published. Required fields are marked *