# Binomial Theorem Class 11 Notes - Chapter 8

According to the CBSE Syllabus 2023-24, this chapter has been renumbered as Chapter 7.

The binomial expression is an expression comprising two terms connected by the -ve or +ve sign. Equations like x + a, 2x – 3y,

$$\begin{array}{l}\frac{1}{x}-\frac{1}{x^{3}}\end{array}$$
,
$$\begin{array}{l}7x-\frac{2}{4x^{3}}\end{array}$$
are examples of binomial expressions. The binomial expansion of
$$\begin{array}{l}(p+q)^{n}\end{array}$$
will have a total of (n + 1) terms. The coefficients in the binomial expansion follow a pattern called as Pascal’s triangle. The sum of exponents of ‘p’ and ‘q’ is always equal to n.

## Binomial Expression

[p + q]n = [ nC0 × pn ] + [ nC1 × (pn – 1) × q ] + [ nC2 × (pn – 2) × q2 ] + [ nC3 × (pn – 3 )× q3 ] + . . . . . . . . . . . . . + [ nCn – 1 × p × (qn – 1) ] + [ nCn × qn ]. Where p and q are real numbers, and n is a positive integer.

### $$\begin{array}{l}\Rightarrow\end{array}$$ Binomial Coefficient

The coefficients nC0, nC1, nC2 . . . . . . . . . nCn occurring in the Binomial expression are called Binomial coefficients. Given below are some conclusions that can be derived using the Binomial Theorem.

(i) [x + y]n = [ nC0 × (xn) ] + [ nC1 × (xn – 1) × y ] + [ nC2 × (xn – 2) × y2 ] + [ nC3 × (xn – 3) × y3 ] + . . . . . . . . . . . . . . . . . . + [ nCn × yn ]

(ii) [x – y]n = [ nC0 × (xn) ] – [ nC1 × (xn – 1) × y ] + [ nC2 × (xn – 2) × y2 ] – [ nC3 × (xn – 3) × y3 ] + . . . . . . . . . . . . . . . . . . +(-1)n [ nCn × yn ]

(iii) [1 – x]n = [ nC0 ] – [ nC1 . x ] + [ nC2 . x2 ] – [ nC3 . x3 ] + . . . . . . . . . . . . . . . . . . + (-1)n [ nCn . xn ]

(iv) (a + b)n =

$$\begin{array}{l}\sum_{r\;=\;0}^{n}\end{array}$$
nCr (a)n – r × br

NOTE:

1. nCr =
$$\begin{array}{l}\frac{n!}{r!(n-r)!}\end{array}$$
where, n is a non-negative integer and [0 ≤ r ≤ n]
2. nC0 = nCn = 1
3. There are total (n + 1) terms in the expansion of (a + b)n

### Important Formulas

• The general term in the expansion of (a + b)n:
Tr + 1 = nCr × (a)n – r × br
• The middle term in the expansion of (a + b)n :

Case 1:

If n is even: The middle term =

$$\begin{array}{l}\left ( \frac{n}{2}+1 \right )^{th}term\end{array}$$

Case 2:

If n is odd: The middle term =

$$\begin{array}{l}\left ( \frac{n+1}{2}\right )^{th}term\;\;and\;\;\left ( \frac{n+1}{2} +1 \right )^{th}term\end{array}$$

### Binomial Theorem Class 11 Important Questions

1. Determine the coefficient of
$$\begin{array}{l}(x)^{n}\end{array}$$
in the expansion of
$$\begin{array}{l}(x^{3}+3x^{2}+4x-17)^{4}\end{array}$$
2. If the coefficient of the 2nd, 3rd and 4th terms in the expansion of
$$\begin{array}{l}(1+x)^{2n}\end{array}$$
are in Arithmetic Progression. Show that
$$\begin{array}{l}2n^{2}-9n+7=0\end{array}$$
.
3. Find the greatest term in the expansion of
$$\begin{array}{l}(2+3x)^{9}\end{array}$$
, where x = 3/2.
4. Determine the 4th term from the end in the expansion of
$$\begin{array}{l}\left [ \frac{x^{2}}{5}-\frac{x}{3} \right ]^{8}\end{array}$$
5. Expand the following
$$\begin{array}{l}\left [2x^{2}-5x+8\right ]^{4}\end{array}$$

To get more details on Binomial Theorem, visit here.

## Frequently Asked Questions on CBSE Class 11 Maths Notes Chapter 8 Binomial Theorem

Q1

### What is the Binomial theorem?

The Binomial Theorem states the algebraic expansion of exponents of a binomial, which means it is possible to expand a polynomial (a + b) n into multiple terms.

Q2

### What is a Pascal triangle?

Pascal’s triangle, in algebra, is a triangular arrangement of numbers that gives the coefficients in the expansion of any binomial expression, such as (x + y), to the power n.

Q3

### What is a Factorial?

The product of all positive integers less than or equal to a given positive integer and denoted by that integer and an exclamation point is called a ‘Factorial’.