*According to the CBSE Syllabus 2023-24, this chapter has been renumbered as Chapter 10.
NCERT Solutions for Class 7 Maths Exercise 12.2 Chapter 12 Algebraic Expressions in simple PDF are available here. Adding and subtracting like terms and adding and subtracting general algebraic expressions are the two topics covered in this exercise of NCERT Solutions for Class 7 Maths Chapter 12. Subject experts prepare these solutions for algebraic expressions to help students gear up their exam preparations. Students can either practise online or download these NCERT Solutions for Class 7 Maths and practise different types of questions.
NCERT Solutions for Class 7 Maths Chapter 12 Perimeter and Area – Exercise 12.2
Access Other Exercises of NCERT Solutions for Class 7 Maths Chapter 12 – Algebraic Expressions
Access Answers to NCERT Solutions for Class 7 Maths Chapter 12 – Algebraic Expressions Exercise 12.2
1. Simplify combining like terms:
(i) 21b – 32 + 7b – 20b
Solution:-
When terms have the same algebraic factors, they are like terms.
Then,
= (21b + 7b – 20b) – 32
= b (21 + 7 – 20) – 32
= b (28 – 20) – 32
= b (8) – 32
= 8b – 32
(ii) – z2 + 13z2 – 5z + 7z3 – 15z
Solution:-
When terms have the same algebraic factors, they are like terms.
Then,
= 7z3 + (-z2 + 13z2) + (-5z – 15z)
= 7z3 + z2 (-1 + 13) + z (-5 – 15)
= 7z3 + z2 (12) + z (-20)
= 7z3 + 12z2 – 20z
(iii) p – (p – q) – q – (q – p)
Solution:-
When terms have the same algebraic factors, they are like terms.
Then,
= p – p + q – q – q + p
= p – q
(iv) 3a – 2b – ab – (a – b + ab) + 3ab + b – a
Solution:-
When terms have the same algebraic factors, they are like terms.
Then,
= 3a – 2b – ab – a + b – ab + 3ab + b – a
= 3a – a – a – 2b + b + b – ab – ab + 3ab
= a (1 – 1- 1) + b (-2 + 1 + 1) + ab (-1 -1 + 3)
= a (1 – 2) + b (-2 + 2) + ab (-2 + 3)
= a (1) + b (0) + ab (1)
= a + ab
(v) 5x2y – 5x2 + 3yx2 – 3y2 + x2 – y2 + 8xy2 – 3y2
Solution:-
When terms have the same algebraic factors, they are like terms.
Then,
= 5x2y + 3yx2 – 5x2 + x2 – 3y2 – y2 – 3y2
= x2y (5 + 3) + x2 (- 5 + 1) + y2 (-3 – 1 -3) + 8xy2
= x2y (8) + x2 (-4) + y2 (-7) + 8xy2
= 8x2y – 4x2 – 7y2 + 8xy2
(vi) (3y2 + 5y – 4) – (8y – y2 – 4)
Solution:-
When terms have the same algebraic factors, they are like terms.
Then,
= 3y2 + 5y – 4 – 8y + y2 + 4
= 3y2 + y2 + 5y – 8y – 4 + 4
= y2 (3 + 1) + y (5 – 8) + (-4 + 4)
= y2 (4) + y (-3) + (0)
= 4y2 – 3y
2. Add:
(i) 3mn, – 5mn, 8mn, – 4mn
Solution:-
When terms have the same algebraic factors, they are like terms.
Then, we have to add the like terms
= 3mn + (-5mn) + 8mn + (- 4mn)
= 3mn – 5mn + 8mn – 4mn
= mn (3 – 5 + 8 – 4)
= mn (11 – 9)
= mn (2)
= 2mn
(ii) t – 8tz, 3tz – z, z – t
Solution:-
When terms have the same algebraic factors, they are like terms.
Then, we have to add the like terms
= t – 8tz + (3tz – z) + (z – t)
= t – 8tz + 3tz – z + z – t
= t – t – 8tz + 3tz – z + z
= t (1 – 1) + tz (- 8 + 3) + z (-1 + 1)
= t (0) + tz (- 5) + z (0)
= – 5tz
(iii) – 7mn + 5, 12mn + 2, 9mn – 8, – 2mn – 3
Solution:-
When terms have the same algebraic factors, they are like terms.
Then, we have to add the like terms
= – 7mn + 5 + 12mn + 2 + (9mn – 8) + (- 2mn – 3)
= – 7mn + 5 + 12mn + 2 + 9mn – 8 – 2mn – 3
= – 7mn + 12mn + 9mn – 2mn + 5 + 2 – 8 – 3
= mn (-7 + 12 + 9 – 2) + (5 + 2 – 8 – 3)
= mn (- 9 + 21) + (7 – 11)
= mn (12) – 4
= 12mn – 4
(iv) a + b – 3, b – a + 3, a – b + 3
Solution:-
When terms have the same algebraic factors, they are like terms.
Then, we have to add the like terms
= a + b – 3 + (b – a + 3) + (a – b + 3)
= a + b – 3 + b – a + 3 + a – b + 3
= a – a + a + b + b – b – 3 + 3 + 3
= a (1 – 1 + 1) + b (1 + 1 – 1) + (-3 + 3 + 3)
= a (2 -1) + b (2 -1) + (-3 + 6)
= a (1) + b (1) + (3)
= a + b + 3
(v) 14x + 10y – 12xy – 13, 18 – 7x – 10y + 8xy, 4xy
Solution:-
When terms have the same algebraic factors, they are like terms.
Then, we have to add the like terms
= 14x + 10y – 12xy – 13 + (18 – 7x – 10y + 8xy) + 4xy
= 14x + 10y – 12xy – 13 + 18 – 7x – 10y + 8xy + 4xy
= 14x – 7x + 10y– 10y – 12xy + 8xy + 4xy – 13 + 18
= x (14 – 7) + y (10 – 10) + xy(-12 + 8 + 4) + (-13 + 18)
= x (7) + y (0) + xy(0) + (5)
= 7x + 5
(vi) 5m – 7n, 3n – 4m + 2, 2m – 3mn – 5
Solution:-
When terms have the same algebraic factors, they are like terms.
Then, we have to add the like terms
= 5m – 7n + (3n – 4m + 2) + (2m – 3mn – 5)
= 5m – 7n + 3n – 4m + 2 + 2m – 3mn – 5
= 5m – 4m + 2m – 7n + 3n – 3mn + 2 – 5
= m (5 – 4 + 2) + n (-7 + 3) – 3mn + (2 – 5)
= m (3) + n (-4) – 3mn + (-3)
= 3m – 4n – 3mn – 3
(vii) 4x2y, – 3xy2, –5xy2, 5x2y
Solution:-
When terms have the same algebraic factors, they are like terms.
Then, we have to add the like terms
= 4x2y + (-3xy2) + (-5xy2) + 5x2y
= 4x2y + 5x2y – 3xy2 – 5xy2
= x2y (4 + 5) + xy2 (-3 – 5)
= x2y (9) + xy2 (- 8)
= 9x2y – 8xy2
(viii) 3p2q2 – 4pq + 5, – 10 p2q2, 15 + 9pq + 7p2q2
Solution:-
When terms have the same algebraic factors, they are like terms.
Then, we have to add the like terms
= 3p2q2 – 4pq + 5 + (- 10p2q2) + 15 + 9pq + 7p2q2
= 3p2q2 – 10p2q2 + 7p2q2 – 4pq + 9pq + 5 + 15
= p2q2 (3 -10 + 7) + pq (-4 + 9) + (5 + 15)
= p2q2 (0) + pq (5) + 20
= 5pq + 20
(ix) ab – 4a, 4b – ab, 4a – 4b
Solution:-
When terms have the same algebraic factors, they are like terms.
Then, we have to add the like terms
= ab – 4a + (4b – ab) + (4a – 4b)
= ab – 4a + 4b – ab + 4a – 4b
= ab – ab – 4a + 4a + 4b – 4b
= ab (1 -1) + a (4 – 4) + b (4 – 4)
= ab (0) + a (0) + b (0)
= 0
(x) x2 – y2 – 1, y2 – 1 – x2, 1 – x2 – y2
Solution:-
When terms have the same algebraic factors, they are like terms.
Then, we have to add the like terms
= x2 – y2 – 1 + (y2 – 1 – x2) + (1 – x2 – y2)
= x2 – y2 – 1 + y2 – 1 – x2 + 1 – x2 – y2
= x2 – x2 – x2 – y2 + y2 – y2 – 1 – 1 + 1
= x2 (1 – 1- 1) + y2 (-1 + 1 – 1) + (-1 -1 + 1)
= x2 (1 – 2) + y2Â (-2 +1) + (-2 + 1)
= x2 (-1) + y2Â (-1) + (-1)
= -x2 – y2 -1
3. Subtract:
(i) –5y2 from y2
Solution:-
When terms have the same algebraic factors, they are like terms.
Then, we have to subtract the like terms
= y2 – (-5y2)
= y2Â + 5y2
= 6y2
(ii) 6xy from –12xy
Solution:-
When terms have the same algebraic factors, they are like terms.
Then, we have to subtract the like terms
= -12xy – 6xy
= – 18xy
(iii) (a – b) from (a + b)
Solution:-
When terms have the same algebraic factors, they are like terms.
Then, we have to subtract the like terms
= (a + b) – (a – b)
= a + b – a + b
= a – a + b + b
= a (1 – 1) + b (1 + 1)
= a (0) + b (2)
= 2b
(iv) a (b – 5) from b (5 – a)
Solution:-
When terms have the same algebraic factors, they are like terms.
Then, we have to subtract the like terms
= b (5 -a) – a (b – 5)
= 5b – ab – ab + 5a
= 5b + ab (-1 -1) + 5a
= 5a + 5b – 2ab
(v) –m2 + 5mn from 4m2 – 3mn + 8
Solution:-
When terms have the same algebraic factors, they are like terms.
Then, we have to subtract the like terms
= 4m2 – 3mn + 8 – (- m2 + 5mn)
= 4m2 – 3mn + 8 + m2 – 5mn
= 4m2 + m2 – 3mn – 5mn + 8
= 5m2 – 8mn + 8
(vi) – x2 + 10x – 5 from 5x – 10
Solution:-
When terms have the same algebraic factors, they are like terms.
Then, we have to subtract the like terms
= 5x – 10 – (-x2 + 10x – 5)
= 5x – 10 + x2 – 10x + 5
= x2 + 5x – 10x – 10 + 5
= x2 – 5x – 5
(vii) 5a2 – 7ab + 5b2 from 3ab – 2a2 – 2b2
Solution:-
When terms have the same algebraic factors, they are like terms.
Then, we have to subtract the like terms
= 3ab – 2a2 – 2b2 – (5a2 – 7ab + 5b2)
= 3ab – 2a2 – 2b2 – 5a2 + 7ab – 5b2
= 3ab + 7ab – 2a2 – 5a2 – 2b2 – 5b2
= 10ab – 7a2 – 7b2
(viii) 4pq – 5q2 – 3p2 from 5p2 + 3q2 – pq
Solution:-
When terms have the same algebraic factors, they are like terms.
Then, we have to subtract the like terms
= 5p2 + 3q2 – pq – (4pq – 5q2 – 3p2)
= 5p2 + 3q2 – pq – 4pq + 5q2 + 3p2
= 5p2 + 3p2 + 3q2 + 5q2 – pq – 4pq
= 8p2 + 8q2 – 5pq
4. (a) What should be added to x2 + xy + y2 to obtain 2x2 + 3xy?
Solution:-
Let us assume p be the required term
Then,
p + (x2 + xy + y2) = 2x2 + 3xy
p = (2x2Â + 3xy) – (x2 + xy + y2)
p = 2x2 + 3xy – x2 – xy – y2
p = 2x2 – x2 + 3xy – xy – y2
p = x2 + 2xy – y2
(b) What should be subtracted from 2a + 8b + 10 to get – 3a + 7b + 16?
Solution:-
Let us assume x be the required term
Then,
2a + 8b + 10 – x = -3a + 7b + 16
x = (2a + 8b + 10) – (-3a + 7b + 16)
x = 2a + 8b + 10 + 3a – 7b – 16
x = 2a + 3a + 8b – 7b + 10 – 16
x = 5a + b – 6
5. What should be taken away from 3x2 – 4y2 + 5xy + 20 to obtain – x2 – y2 + 6xy + 20?
Solution:-
Let us assume a be the required term
Then,
3x2 – 4y2 + 5xy + 20 – a = -x2 – y2 + 6xy + 20
a = 3x2 – 4y2 + 5xy + 20 – (-x2 – y2 + 6xy + 20)
a = 3x2 – 4y2 + 5xy + 20 + x2 + y2 – 6xy – 20
a = 3x2 + x2 – 4y2 + y2 + 5xy – 6xy + 20 – 20
a = 4x2 – 3y2 – xy
6. (a) From the sum of 3x – y + 11 and – y – 11, subtract 3x – y – 11.
Solution:-
First we have to find out the sum of 3x – y + 11 and – y – 11
= 3x – y + 11 + (-y – 11)
= 3x – y + 11 – y – 11
= 3x – y – y + 11 – 11
= 3x – 2y
Now, subtract 3x – y – 11 from 3x – 2y
= 3x – 2y – (3x – y – 11)
= 3x – 2y – 3x + y + 11
= 3x – 3x – 2y + y + 11
= -y + 11
(b) From the sum of 4 + 3x and 5 – 4x + 2x2, subtract the sum of 3x2 – 5x and
–x2 + 2x + 5.
Solution:-
First we have to find out the sum of 4 + 3x and 5 – 4x + 2x2
= 4 + 3x + (5 – 4x + 2x2)
= 4 + 3x + 5 – 4x + 2x2
= 4 + 5 + 3x – 4x + 2x2
= 9 – x + 2x2
= 2x2 – x + 9 … [equation 1]
Then, we have to find out the sum of 3x2 – 5x and – x2 + 2x + 5
= 3x2 – 5x + (-x2 + 2x + 5)
= 3x2 – 5x – x2 + 2x + 5
= 3x2 – x2 – 5x + 2x + 5
= 2x2 – 3x + 5 … [equation 2]
Now, we have to subtract equation (2) from equation (1)
= 2x2 – x + 9 – (2x2 – 3x + 5)
= 2x2 – x + 9 – 2x2 + 3x – 5
= 2x2 – 2x2 – x + 3x + 9 – 5
= 2x + 4
Also, explore –Â
NCERT Solutions for Class 7 Maths
Thanks for teachers
I like byjus very much ,It helps in studies.
Thank you very much Byjus
Thankyou very much Byjus
I think byjus is fantastic and fabulous it can provide anything l. It can tell you the answers of any question
Thank you byjus for providing this best quality of things
Thank you so much byjus
Thanks byjus so much. 🙂
Super byjus
Super good Byjus is Super good
Thank you byjus
It’s very helpfull for our exams