RD Sharma Solutions for Class 7 Maths Exercise 8.3 Chapter 8 Linear Equations in One Variable

RD Sharma Solutions for Class 7 Maths Exercise 8.3 of Chapter 8 Linear Equation in One Variable are provided in simple PDF format. Learners can easily download the PDF from the given links. The BYJU’S subject experts have solved the questions present in this exercise, which will help students with their exam preparation. We suggest practising RD Sharma Solutions for Class 7 to improve their Maths skills. This exercise discusses the transposition method, which is defined as any term of the equation that can be taken to the other side with its sign changed without affecting equality.

Download the PDF of RD Sharma Solutions for Class 7 Maths Chapter 8 – Linear Equations in One variable Exercise 8.3

Download PDF Download PDF

 

Access answers to Maths RD Sharma Solutions for Class 7 Chapter 8 – Linear Equation in One Variable Exercise 8.3

Solve each of the following equations. Also, verify the result in each case.

1. 6x + 5 = 2x + 17

Solution:

Given 6x + 5 = 2x + 17

Transposing 2x to LHS and 5 to RHS, we get

6x – 2x = 17 – 5

4x = 12

Dividing both sides by 4, we get

4x/4 = 12/4

x = 3

Verification:

Substituting x = 3 in the given equation, we get

6 × 3 + 5 = 2 × 3 + 17

18 + 5 = 6 + 17

23 = 23

Therefore LHS = RHS

Hence, verified.

2. 2 (5x – 3) – 3 (2x – 1) = 9

Solution:

Given 2 (5x – 3) – 3 (2x – 1) = 9

Simplifying the brackets, we get

2 × 5x – 2 × 3 – 3 × 2x + 3 × 1 = 9

10x – 6 – 6x + 3 = 9

10x – 6x – 6 + 3 = 9

4x – 3 = 9

Adding 3 to both sides, we get

4x – 3 + 3 = 9 + 3

4x = 12

Dividing both sides by 4, we get

4x/4 = 12/4

Therefore x = 3.

Verification:

Substituting x = 3 in LHS, we get

2(5 × 3 – 3) – 3(2 × 3 – 1) = 9

2 × 12 – 3 × 5 = 9

24 – 15 = 9

9 = 9

Thus, LHS = RHS

Hence, verified.

3. (x/2) = (x/3) + 1

Solution:

Given (x/2) = (x/3) + 1

Transposing (x/3) to LHS we get

(x/2) – (x/3) = 1

(3x – 2x)/6 = 1 [LCM of 3 and 2 is 6]

x/6 = 1

Multiplying 6 to both sides we get,

x = 6

Verification:

Substituting x = 6 in given equation we get

(6/2) = (6/3) + 1

3 = 2 + 1

3 = 3

Thus LHS = RHS

Hence, verified.

4. (x/2) + (3/2) = (2x/5) – 1

Solution:

Given (x/2) + (3/2) = (2x/5) – 1

Transposing (2x/5) to LHS and (3/2) to RHS, then we get

(x/2) – (2x/5) = – 1 – (3/2)

(5x -4x)/10 = (-2 – 3)/2 [LCM of 5 and 2 is 10]

x/10 = -5/2

Multiplying both sides by 10 we get,

x/10 × 10 = (-5/2) × 10

x = (-50/2)

x = -25

Verification:

Substituting x = -25 in given equation we get

(-25/2) + (3/2) = (-50/5) – 1

(-25 + 3)/2 = -10 – 1

(-22/2) = -11

-11 = -11

Thus LHS = RHS

Hence, verified.

5. (3/4) (x -1) = (x – 3)

Solution:

Given (3/4) (x -1) = (x – 3)

On simplifying the brackets both sides we get,

(3/4) x – (3/4) = (x – 3)

Now transposing (3/4) to RHS and (x – 3) to LHs

(3/4) x – x = (3/4) – 3

(3x – 4x)/4 = (3 – 12)/4

-x/4 = (-9/4)

Multiply both sides by -4 we get

-x/4 × -4 = (-9/4) × -4

x = 9

Verification:

Substituting x = 9 in the given equation:

(3/4) (9 – 1) = (9 -3)

(3/4) (8) = 6

3 × 2 = 6

6 = 6

Thus LHS = RHS

Hence, verified.

6. 3 (x – 3) = 5 (2x + 1)

Solution:

Given 3 (x – 3) = 5 (2x + 1)

On simplifying the brackets we get,

3x – 9 = 10x + 5

Now transposing 10x to LHS and 9 to RHs

3x – 10x = 5 + 9

-7x = 14

Now dividing both sides by -7 we get

-7x/-7 = 14/-7

x = -2

Verification:

Substituting x = -2 in the given equation we get

3 (-2 – 3) = 5 (-4 + 1)

3 (-5) = 5 (-3)

-15 = – 15

Thus LHS = RHS

Hence, verified.

7. 3x – 2 (2x -5) = 2 (x + 3) – 8

Solution:

Given 3x – 2 (2x -5) = 2 (x + 3) – 8

On simplifying the brackets on both sides, we get

3x – 2 × 2x + 2 × 5 = 2 × x + 2 × 3 – 8

3x – 4x + 10 = 2x + 6 – 8

-x + 10 = 2x – 2

Transposing x to RHS and 2 to LHS, we get

10 + 2 = 2x + x

3x = 12

Dividing both sides by 3, we get

3x/3 = 12/3

x = 4

Verification:

Substituting x = 4 on both sides, we get

3(4) – 2{2(4) – 5} = 2(4 + 3) – 8

12 – 2(8 – 5) = 14 – 8

12 – 6 = 6

6 = 6

Thus LHS = RHS

Hence, verified.

8. x – (x/4) – (1/2) = 3 + (x/4)

Solution:

Given x – (x/4) – (1/2) = 3 + (x/4)

Transposing (x/4) to LHS and (1/2) to RHS

x – (x/4) – (x/4) = 3 + (1/2)

(4x – x – x)/4 = (6 + 1)/2

2x/4 = 7/2

x/2 = 7/2

x = 7

Verification:

Substituting x = 7 in the given equation we get

7 – (7/4) – (1/2) = 3 + (7/4)

(28 – 7 – 2)/4 = (12 + 7)/4

19/4 = 19/4

Thus LHS = RHS

Hence, verified.

9. (6x – 2)/9 + (3x + 5)/18 = (1/3)

Solution:

Given (6x – 2)/9 + (3x + 5)/18 = (1/3)

(6x (2) – 2 (2) + 3x + 5)/18 = (1/3)

(12x – 4 + 3x + 5)/18 = (1/3)

(15x + 1)/ 18 = (1/3)

Multiplying both sides by 18 we get

(15x + 1)/18 × 18 = (1/3) × 18

15x + 1 = 6

Transposing 1 to RHS, we get

= 15x = 6 – 1

= 15x = 5

Dividing both sides by 15, we get

= 15x/15 = 5/15

=x = 1/3

Verification:

Substituting x = 1/3 both sides, we get

(6 (1/3) – 2)/9 + (3 (1/3) + 5)/18 = (1/3)

(2 – 2)/9 + (1 + 5)/ 18 = 1/3

(6/18) = (1/3)

(1/3) = (1/3)

Thus LHS = RHS

Hence, verified.

10. m – (m – 1)/2 = 1 – (m – 2)/3

Solution:

Given m – (m – 1)/2 = 1 – (m – 2)/3

(2m – m + 1)/2 = (3 – m + 2)/3

(m + 1)/2 = (5 – m)/3

(m + 1)/2 = (5/3) – (m/3)

(m/2) + (1/2) = (5/3) – (m/3)

Transposing (m/3) to LHS and (1/2) to RHS

(m/2) + (m/3) = (5/3) – (1/2)

(3m + 2m)/6 = (10 – 3)/6

5m/6 = (7/6)

5m = 7

Dividing both sides by 5, we get

5m/5 = 7/5

m = 7/5

Verification:

Substituting m = 7/5 on both sides, we get

(7/5) – (7 – 5)/10 = 1 – (7 – 10)/15

(7/5) – (2/10) = (15 + 3)/15

(14 – 2)/10 = (15 + 3)/15

12/10 = 18/15

(6/5) = (6/5)

Thus LHS = RHS

Hence, verified.

11. (5x – 1)/3 – (2x – 2)/3 = 1

Solution:

Given (5x – 1)/3 – (2x – 2)/3 = 1

(5x – 1 – 2x + 2)/3 = 1

(3x + 1)/3 = 1

Multiplying both sides by 3 we get

(3x + 1)/3 × 3 = 1 × 3

(3x + 1) = 3

Subtracting 1 from both sides we get

3x + 1 – 1 = 3 – 1

3x = 2

Dividing both sides by 3, we get

3x/3 = 2/3

x = 2/3

Verification:

Substituting x = 2/3 in LHS, we get

(5 (2/3) – 1)/3 – (2 (2/3) – 2)/3 = 1

(10/3 -1)/3 – (4/3 – 2)/3 = 1

(7/3)/3 – (-2/3)/3 = 1

(7/9) + (2/9) = 1

(9/9) = 1

1 = 1

Thus LHS = RHS

Hence, verified.

12. 0.6x + 4/5 = 0.28x + 1.16

Solution:

Given 0.6x + 4/5 = 0.28x + 1.16

Transposing 0.28x to LHS and 45 to RHS, we get

0.6x – 0.28x = 1.16 – 45

0.32x = 1.16 – 0.8

0.32x = 0.36

Dividing both sides by 0.32, we get

0.32 x 0.32 = 0.360.32

x = 9/8

Verification:

Substituting x = 9/8 on both sides, we get

0.6(9/8) + 45 = 0.28(9/8) + 1.16

5.4/8 + 4/5 = 2.52/8 + 1.16

0.675 + 0.8 = 0.315 + 1.16

1.475 = 1.475

Thus LHS = RHS

Hence, verified.

13. 0.5x + (x/3) = 0.25x + 7

Solution:

Given 0.5x + (x/3) = 0.25x + 7

(5/10) x + (x/3) = (25x/100) + 7

(x/2) + (x/3) = (x/4) + 7

Transposing (x/4) to LHS we get

(x/2) + (x/3) – (x/4) = 7

(6x + 4x – 3x)/12 = 7

(7x/12) = 7

Multiplying both sides by 12 we get

(7x/12) × 12 = 7 × 12

7x = 84

Dividing both sides by 7 we get

(7x/7) = (84/7)

x = 12

Verification:

Substituting x = 12 in given equation we get

0.5 (12) + (12/3) = 0.25 (12) + 7

6 + 4 = 3 + 7

10 = 10

Thus LHS = RHS

Hence, verified.

Comments

Leave a Comment

Your Mobile number and Email id will not be published.

*

*

Tuition Center
Tuition Centre
free trial
Free Trial Class
Scholarship Test
Scholarship Test
Question and Answer
Question & Answer