RD Sharma Solutions for Class 7 Maths Exercise 9.1 Chapter 9 Ratio and Proportion

Students can view and download the PDF of RD Sharma Solutions for Class 7 Maths Exercise 9.1 of Chapter 9 Ratio and Proportion, provided here. RD Sharma Solutions for Class 7 are the best study materials for those who aim to secure excellent marks in the annual exam. The solutions are formulated by the subject expert team at BYJU’S. This exercise primarily deals with ratios of two quantities. Some of the topics covered in this exercise are mentioned below.

  • Ratio – The ratio of two quantities of the same kind and in the same units is a fraction that shows how many times one quantity is of the other
  • Ratio in the simplest form

RD Sharma Solutions for Class 7 Maths Chapter 9 – Ratio and Proportion Exercise 9.1

Download PDF Download PDF

Access answers to Maths RD Sharma Solutions for Class 7 Chapter 9 – Ratio and proportion Exercise 9.1

1. If x: y = 3: 5, find the ratio 3x + 4y: 8x + 5y

Solution:

Given x: y = 3: 5

We can write above equation as

x/y = 3/5

5x = 3y

x = 3y/5

By substituting the value of x in given equation 3x + 4y: 8x + 5y we get,

3x + 4y: 8x + 5y = 3 (3y/5) + 4y: 8 (3y/5) + 5y

= (9y + 20y)/5: (24y + 25y)/5

= 29y/5: 49y/5

= 29y: 49y

= 29: 49

2. If x: y = 8: 9, find the ratio (7x – 4y): 3x + 2y.

Solution:

Given x: y = 8: 9

We can write above equation as

x/y = 8/9

9x = 8y

x = 8y/9

By substituting the value of x in the given equation (7x – 4y): 3x + 2y we get,

(7x – 4y): 3x + 2y = 7 (8y/9) – 4y: 3 (8y/9) + 2y

= (56y – 36y)/9: (24y + 18y)/9

= 20y/9: 42y/9

= 20y: 42y

= 20: 42

= 10: 21

3. If two numbers are in the ratio 6: 13 and their L.C.M is 312, find the numbers.

Solution:

Given two numbers are in the ratio 6: 13

Let the required number be 6x and 13x

The LCM of 6x and 13x is 78x

= 78x = 312

x = (312/78)

x = 4

Thus the numbers are 6x = 6 (4) = 24

13x = 13 (4) = 52

4. Two numbers are in the ratio 3: 5. If 8 is added to each number, the ratio becomes 2:3. Find the numbers.

Solution:

Let the required numbers be 3x and 5x

Given that if 8 is added to each other then ratio becomes 2: 3

That is 3x + 8: 5x + 8 = 2: 3

(3x + 8)/ (5x + 8) = 2/3

3 (3x + 8) = 2 (5x + 8)

9x + 24 = 10x + 16

By transposing

24 – 16 = 10x – 9x

x = 8

Thus the numbers are 3x = 3 (8) = 24

And 5x = 5 (8) = 40

5. What should be added to each term of the ratio 7: 13 so that the ratio becomes 2: 3

Solution:

Let the number to be added is x

Then (7 + x)/ (13 + x) = (2/3)

(7 + x) 3 = 2 (13 + x)

21 + 3x = 26 + 2x

3x – 2x = 26 – 21

x = 5

Hence the required number is 5

6. Three numbers are in the ratio 2: 3: 5 and the sum of these numbers is 800. Find the numbers

Solution:

Given that three numbers are in the ratio 2: 3: 5 and sum of them is 800

Therefore sum of the terms of the ratio = 2 + 3 + 5 = 10

First number = (2/10) × 800

= 2 × 80

= 160

Second number = (3/10) × 800

= 3 × 80

= 240

Third number = (5/10) × 800

= 5 × 80

= 400

The three numbers are 160, 240 and 400

7. The ages of two persons are in the ratio 5: 7. Eighteen years ago their ages were in the ratio 8: 13. Find their present ages.

Solution:

Let present ages of two persons be 5x and 7x

Given ages of two persons are in the ratio 5: 7

And also given that 18 years ago their ages were in the ratio 8: 13

Therefore (5x – 18)/ (7x – 18) = (8/13)

13 (5x – 18) = 8 (7x – 18)

65x – 234 = 56x – 144

65x – 56x = 234 – 144

9x = 90

x = 90/9

x = 10

Thus the ages are 5x = 5 (10) = 50 years

And 7x = 7 (10) = 70 years

8. Two numbers are in the ratio 7: 11. If 7 is added to each of the numbers, the ratio becomes 2: 3. Find the numbers.

Solution:

Let the required numbers be 7x and 11x

If 7 is added to each of them then

(7x + 7)/ (11x + 7) = (2/3)

3 (7x + 7) = 2 (11x + 7)

21x + 21 = 22x + 14

22x – 21x = 21 – 14

x = 21 – 14 = 7

Thus the numbers are 7x = 7 (7) =49

And 11x = 11 (7) = 77

9. Two numbers are in the ratio 2: 7. 11 the sum of the numbers is 810. Find the numbers.

Solution:

Given two numbers are in the ratio 2: 7

And their sum = 810

Sum of terms in the ratio = 2 + 7 = 9

First number = (2/9) × 810

= 2 × 90

= 180

Second number = (7/9) × 810

= 7 × 90

= 630

10. Divide Rs 1350 between Ravish and Shikha in the ratio 2: 3.

Solution:

Given total amount to be divided = 1350

Sum of the terms of the ratio = 2 + 3 = 5

Ravish share of money = (2/5) × 1350

= 2 × 270

= Rs. 540

And Shikha’s share of money = (3/5) × 1350

= 3 × 270

= Rs. 810

11. Divide Rs 2000 among P, Q, R in the ratio 2: 3: 5.

Solution:

Given total amount to be divided = 2000

Sum of the terms of the ratio = 2 + 3 + 5 = 10

P’s share of money = (2/10) × 2000

= 2 × 200

= Rs. 400

And Q’s share of money = (3/10) × 2000

= 3 × 200

= Rs. 600

And R’s share of money = (5/10) × 2000

= 5 × 200

= Rs. 1000

12. The boys and the girls in a school are in the ratio 7:4. If total strength of the school be 550, find the number of boys and girls.

Solution:

Given that boys and the girls in a school are in the ratio 7:4

Sum of the terms of the ratio = 7 + 4 = 11

Total strength = 550

Boys strength = (7/11) × 550

= 7 × 50

= 350

Girls strength = (4/11) × 550

= 4 × 50

= 200

13. The ratio of monthly income to the savings of a family is 7: 2. If the savings be of Rs. 500, find the income and expenditure.

Solution:

Given that the ratio of income and savings is 7: 2

Let the savings be 2x

2x = 500

So, x = 250

Therefore,

Income = 7x

Income = 7 × 250 = 1750

Expenditure = Income – savings

= 1750 – 500

= Rs.1250

14. The sides of a triangle are in the ratio 1: 2: 3. If the perimeter is 36 cm, find its sides.

Solution:

Given sides of a triangle are in the ratio 1: 2: 3

Perimeter = 36cm

Sum of the terms of the ratio = 1 + 2 + 3 = 6

First side = (1/6) × 36

= 6cm

Second side = (2/6) × 36

= 2 × 6

= 12cm

Third side = (3/6) × 36

= 6 × 3

= 18cm

15. A sum of Rs 5500 is to be divided between Raman and Amen in the rate 2: 3. How much will each get?

Solution:

Given total amount to be divided = 5500

Sum of the terms of the ratio = 2 + 3 = 5

Raman’s share of money = (2/5) × 5500

= 2 × 1100

= Rs. 2200

And Aman’s share of money = (3/5) × 5500

= 3 × 1100

= Rs. 3300

16. The ratio of zinc and copper in an alloy is 7: 9. It the weight of the copper in the alloy is 11.7 kg, find the weight of the zinc in the alloy.

Solution:

Given that ratio of zinc and copper in an alloy is 7: 9

Let their ratio = 7x: 9x

Weight of copper = 11.7kg

9x = 11.7

x = 11.7/9

x = 1.3

Weight of the zinc in the alloy = 1.3 × 7

= 9.10kg

17. In the ratio 7: 8. If the consequent is 40, what a the antecedent

Solution:

Given ratio = 7: 8

Let the ratio of consequent and antecedent 7x: 8x

Consequent = 40

8x = 40

x = 40/8

x = 5

Antecedent = 7x = 7 × 5 = 35

18. Divide Rs 351 into two parts such that one may be to the other as 2: 7.

Solution:

Given total amount is to be divided = 351

Ratio 2: 7

The sum of terms = 2 + 7

= 9

First ratio of amount = (2/9) × 351

= 2 × 39

= Rs. 78

Second ratio of amount = (7/9) × 351

= 7 × 39

= Rs. 273

19. Find the ratio of the price of pencil to that of ball pen, if pencil cost Rs.16 per score and ball pen cost Rs.8.40 per dozen.

Solution:

One score contains 20 pencils

And cost per score = 16

Therefore pencil cost = 16/20

= Rs. 0.80

Cost of one dozen ball pen = 8.40

1 dozen = 12

Therefore cost of pen = 8.40/12

= Rs 0.70

Ratio of the price of pencil to that of ball pen = 0.80/0.70

= 8/7

= 8: 7

20. In a class, one out of every six students fails. If there are 42 students in the class, how many pass?

Solution:

Given, total number of students = 42

One out of 6 student fails

x out of 42 students

1/6 = x/42

x = 42/6

x = 7

Number of students who fail = 7 students

No of students who pass =Total students – Number of students who fail

= 42 – 7

= 35 students.

Comments

Leave a Comment

Your Mobile number and Email id will not be published.

*

*

Tuition Center
Tuition Centre
free trial
Free Trial Class
Scholarship Test
Scholarship Test
Question and Answer
Question & Answer