*According to the CBSE Syllabus 2023-24, this chapter has been renumbered as Chapter 13.
NCERT Solutions for Class 11 Maths Chapter 15 Statistics, contains solutions for all Exercise 15.2 questions. Chapter 15, Statistics of Class 11 Maths, is categorised under the CBSE Syllabus for the sessions 2023-24. By practising these questions, students can build their confidence level. NCERT Solutions also help the students to excel in their skills in statistics. Download these NCERT Solutions of Class 11 Maths now and start practising for the board exam.
NCERT Solutions for Class 11 Maths Chapter 15 Statistics Exercise 15.2
Access Other Exercise Solutions of Class 11 Maths Chapter 15 Statistics
Exercise 15.1 Solutions : 12 Questions
Exercise 15.3 Solutions : 5 Questions
Miscellaneous Exercise Solutions: 7 Questions
Also, explore –Â
NCERT Solutions for Class 11 Maths Chapter 15
Access NCERT Solutions for Class 11 Maths Chapter 15 Exercise 15.2
Find the mean and variance for each of the data in Exercise 1 to 5.
1. 6, 7, 10, 12, 13, 4, 8, 12
Solution:-
So, xÌ… = (6 + 7 + 10 + 12 + 13 + 4 + 8 + 12)/8
= 72/8
= 9
Let us make the table of the given data and append other columns after calculations.
Xi | Deviations from mean
(xi – x̅) |
(xi – x̅)2 |
6 | 6 – 9 = -3 | 9 |
7 | 7 – 9 = -2 | 4 |
10 | 10 – 9 = 1 | 1 |
12 | 12 – 9 = 3 | 9 |
13 | 13 – 9 = 4 | 16 |
4 | 4 – 9 = – 5 | 25 |
8 | 8 – 9 = – 1 | 1 |
12 | 12 – 9 = 3 | 9 |
74 |
We know that Variance,
σ2 = (1/8) × 74
= 9.2
∴Mean = 9 and Variance = 9.25
2. First n natural numbers
Solution:-
We know that Mean = Sum of all observations/Number of observations
∴Mean, x̅ = ((n(n + 1))2)/n
= (n + 1)/2
and also WKT Variance,
By substitute that value of xÌ… we get,
WKT, (a + b)(a – b) = a2 – b2
σ2 = (n2 – 1)/12
∴Mean = (n + 1)/2 and Variance = (n2 – 1)/12
3. First 10 multiples of 3
Solution:-
First we have to write the first 10 multiples of 3,
3, 6, 9, 12, 15, 18, 21, 24, 27, 30
So, xÌ… = (3 + 6 + 9 + 12 + 15 + 18 + 21 + 24 + 27 + 30)/10
= 165/10
= 16.5
Let us make the table of the data and append other columns after calculations.
Xi | Deviations from mean
(xi – x̅) |
(xi – x̅)2 |
3 | 3 – 16.5 = -13.5 | 182.25 |
6 | 6 – 16.5 = -10.5 | 110.25 |
9 | 9 – 16.5 = -7.5 | 56.25 |
12 | 12 – 16.5 = -4.5 | 20.25 |
15 | 15 – 16.5 = -1.5 | 2.25 |
18 | 18 – 16.5 = 1.5 | 2.25 |
21 | 21 – 16.5 = – 4.5 | 20.25 |
24 | 24 – 16.5 = 7.5 | 56.25 |
27 | 27 – 16.5 = 10.5 | 110.25 |
30 | 30 – 16.5 = 13.5 | 182.25 |
742.5 |
Then, Variance
= (1/10) × 742.5
= 74.25
∴Mean = 16.5 and Variance = 74.25
4.
xi | 6 | 10 | 14 | 18 | 24 | 28 | 30 |
fi | 2 | 4 | 7 | 12 | 8 | 4 | 3 |
Solution:-
Let us make the table of the given data and append other columns after calculations.
Xi | fi | fixi | Deviations from mean
(xi – x̅) |
(xi – x̅)2 | fi(xi – x̅)2 |
6 | 2 | 12 | 6 – 19 = 13 | 169 | 338 |
10 | 4 | 40 | 10 – 19 = -9 | 81 | 324 |
14 | 7 | 98 | 14 – 19 = -5 | 25 | 175 |
18 | 12 | 216 | 18 – 19 = -1 | 1 | 12 |
24 | 8 | 192 | 24 – 19 = 5 | 25 | 200 |
28 | 4 | 112 | 28 – 19 = 9 | 81 | 324 |
30 | 3 | 90 | 30 – 19 = 11 | 121 | 363 |
N = 40 | 760 | 1736 |
5.
xi | 92 | 93 | 97 | 98 | 102 | 104 | 109 |
fi | 3 | 2 | 3 | 2 | 6 | 3 | 3 |
Solution:-
Let us make the table of the given data and append other columns after calculations.
Xi | fi | fixi | Deviations from mean
(xi – x̅) |
(xi – x̅)2 | fi(xi – x̅)2 |
92 | 3 | 276 | 92 – 100 = -8 | 64 | 192 |
93 | 2 | 186 | 93 – 100 = -7 | 49 | 98 |
97 | 3 | 291 | 97 – 100 = -3 | 9 | 27 |
98 | 2 | 196 | 98 – 100 = -2 | 4 | 8 |
102 | 6 | 612 | 102 – 100 = 2 | 4 | 24 |
104 | 3 | 312 | 104 – 100 = 4 | 16 | 48 |
109 | 3 | 327 | 109 – 100 = 9 | 81 | 243 |
N = 22 | 2200 | 640 |
6. Find the mean and standard deviation using short-cut method.
xi | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 |
fi | 2 | 1 | 12 | 29 | 25 | 12 | 10 | 4 | 5 |
Solution:-
Let the assumed mean A = 64. Here h = 1
We obtain the following table from the given data.
Xi | Frequency fi | Yi = (xi – A)/h | Yi2 | fiyi | fiyi2 |
60 | 2 | -4 | 16 | -8 | 32 |
61 | 1 | -3 | 9 | -3 | 9 |
62 | 12 | -2 | 4 | -24 | 48 |
63 | 29 | -1 | 1 | -29 | 29 |
64 | 25 | 0 | 0 | 0 | 0 |
65 | 12 | 1 | 1 | 12 | 12 |
66 | 10 | 2 | 4 | 20 | 40 |
67 | 4 | 3 | 9 | 12 | 36 |
68 | 5 | 4 | 16 | 20 | 80 |
0 | 286 |
Mean,
Where A = 64, h = 1
So, x̅ = 64 + ((0/100) × 1)
= 64 + 0
= 64
Then, variance,
σ2 = (12/1002) [100(286) – 02]
= (1/10000) [28600 – 0]
= 28600/10000
= 2.86
Hence, standard deviation = σ = √2.886
= 1.691
∴ Mean = 64 and Standard Deviation = 1.691
Find the mean and variance for the following frequency distributions in Exercises 7 and 8.
7.
Classes | 0 – 30 | 30 – 60 | 60 – 90 | 90 – 120 | 120 – 150 | 150 – 180 | 180 – 210 |
Frequencies | 2 | 3 | 5 | 10 | 3 | 5 | 2 |
Solution:-
Let us make the table of the given data and append other columns after calculations.
Classes | Frequency fi | Mid – points
xi |
fixi | (xi – x̅) | (xi – x̅)2 | fi(xi – x̅)2 |
0 – 30 | 2 | 15 | 30 | -92 | 8464 | 16928 |
30 – 60 | 3 | 45 | 135 | -62 | 3844 | 11532 |
60 – 90 | 5 | 75 | 375 | -32 | 1024 | 5120 |
90 – 120 | 10 | 105 | 1050 | -2 | 4 | 40 |
120 – 150 | 3 | 135 | 405 | 28 | 784 | 2352 |
150 – 180 | 5 | 165 | 825 | 58 | 3364 | 16820 |
180 – 210 | 2 | 195 | 390 | 88 | 7744 | 15488 |
N = 30 | 3210 | 68280 |
8.
Classes | 0 – 10 | 10 – 20 | 20 – 30 | 30 – 40 | 40 –50 |
Frequencies | 5 | 8 | 15 | 16 | 6 |
Solution:-
Let us make the table of the given data and append other columns after calculations.
Classes | Frequency fi | Mid – points
xi |
fixi | (xi – x̅) | (xi – x̅)2 | fi(xi – x̅)2 |
0 – 10 | 5 | 5 | 25 | -22 | 484 | 2420 |
10 – 20 | 8 | 15 | 120 | -12 | 144 | 1152 |
20 – 30 | 15 | 25 | 375 | -2 | 4 | 60 |
30 – 40 | 16 | 35 | 560 | 8 | 64 | 1024 |
40 –50 | 6 | 45 | 270 | 18 | 324 | 1944 |
N = 50 | 1350 | 6600 |
9. Find the mean, variance and standard deviation using short-cut method
Height in cms | 70 – 75 | 75 – 80 | 80 – 85 | 85 – 90 | 90 – 95 | 95 – 100 | 100 – 105 | 105 – 110 | 110 – 115 |
Frequencies | 3 | 4 | 7 | 7 | 15 | 9 | 6 | 6 | 3 |
Solution:-
Let the assumed mean, A = 92.5 and h = 5
Let us make the table of the given data and append other columns after calculations.
Height (class) | Number of children
Frequency fi |
Midpoint
Xi |
Yi = (xi – A)/h | Yi2 | fiyi | fiyi2 |
70 – 75 | 3 | 72.5 | -4 | 16 | -12 | 48 |
75 – 80 | 4 | 77.5 | -3 | 9 | -12 | 36 |
80 – 85 | 7 | 82.5 | -2 | 4 | -14 | 28 |
85 – 90 | 7 | 87.5 | -1 | 1 | -7 | 7 |
90 – 95 | 15 | 92.5 | 0 | 0 | 0 | 0 |
95 – 100 | 9 | 97.5 | 1 | 1 | 9 | 9 |
100 – 105 | 6 | 102.5 | 2 | 4 | 12 | 24 |
105 – 110 | 6 | 107.5 | 3 | 9 | 18 | 54 |
110 – 115 | 3 | 112.5 | 4 | 16 | 12 | 48 |
N = 60 | 6 | 254 |
Mean,
Where, A = 92.5, h = 5
So, x̅ = 92.5 + ((6/60) × 5)
= 92.5 + ½
= 92.5 + 0.5
= 93
Then, Variance,
σ2 = (52/602) [60(254) – 62]
= (1/144) [15240 – 36]
= 15204/144
= 1267/12
= 105.583
Hence, standard deviation = σ = √105.583
= 10.275
∴ Mean = 93, variance = 105.583 and Standard Deviation = 10.275
10. The diameters of circles (in mm) drawn in a design are given below:
Diameters | 33 – 36 | 37 – 40 | 41 – 44 | 45 – 48 | 49 – 52 |
No. of circles | 15 | 17 | 21 | 22 | 25 |
Calculate the standard deviation and mean diameter of the circles.
[Hint first make the data continuous by making the classes as 32.5-36.5, 36.5-40.5, 40.5-44.5, 44.5 – 48.5, 48.5 – 52.5 and then proceed.]
Solution:-
Let the assumed mean, A = 42.5 and h = 4
Let us make the table of the given data and append other columns after calculations.
Height (class) | Number of children
(Frequency fi) |
Midpoint
Xi |
Yi = (xi – A)/h | Yi2 | fiyi | fiyi2 |
32.5 – 36.5 | 15 | 34.5 | -2 | 4 | -30 | 60 |
36.5 – 40.5 | 17 | 38.5 | -1 | 1 | -17 | 17 |
40.5 – 44.5 | 21 | 42.5 | 0 | 0 | 0 | 0 |
44.5 – 48.5 | 22 | 46.5 | 1 | 1 | 22 | 22 |
48.5 – 52.5 | 25 | 50.5 | 2 | 4 | 50 | 100 |
N = 100 | 25 | 199 |
Mean,
Where, A = 42.5, h = 4
So, x̅ = 42.5 + (25/100) × 4
= 42.5 + 1
= 43.5
Then, Variance,
σ2 = (42/1002)[100(199) – 252]
= (1/625) [19900 – 625]
= 19275/625
= 771/25
= 30.84
Hence, standard deviation = σ = √30.84
= 5.553
∴ Mean = 43.5, variance = 30.84 and Standard Deviation = 5.553.
Comments